中山大学附属第一医院泌尿外科,广东 广州 510080
[ "邓春华,中山大学附属第一医院男科主任,泌尿外科教授/主任医师,博士生导师,中山大学干细胞与组织工程中心兼职教授。主要研究方向为男科疾病发病机制与诊疗新方法研究;电生理技术在男科疾病诊治中的应用及新技术研究;男科疾病干细胞与基因治疗临床转化研究;数字男性健康管理。担任中华医学会男科学分会主任委员,广东省医学会男科学分会第一、二届主任委员,国家卫生健康委医药科技发展研究中心项目专家,广东省干细胞临床研究专家委员会委员,吴阶平医学基金会男性生殖医学部理事,等。担任《中华男科学杂志》名誉主编,《Asian JAndrol》《中国男科学杂志》《广东医学》《新医学》等杂志编委,《Eur Urol》《J Sex Med》《Andrology》《Urology》《Stem cells Dev》《Front. Endocrinol》《Asian J Androl》《Chin Med J》等杂志特邀审稿人。承担各级科研基金30余项3 000余万元,获国家专利 7 项,广东省科技进步二等奖、广东优生优育科技进步一等奖。Email:dengchh@mail.sysu.edu.cn" ]
纸质出版日期:2022-11-20,
收稿日期:2022-07-19,
扫 描 看 全 文
李湘平,邓春华.男性生殖衰老特征的多角度认识[J].中山大学学报(医学科学版),2022,43(06):871-877.
LI Xiang-ping,DENG Chun-hua.Male Reproductive Aging Characteristics:A Multi-perspective Understanding[J].Journal of Sun Yat-sen University(Medical Sciences),2022,43(06):871-877.
李湘平,邓春华.男性生殖衰老特征的多角度认识[J].中山大学学报(医学科学版),2022,43(06):871-877. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0601.
LI Xiang-ping,DENG Chun-hua.Male Reproductive Aging Characteristics:A Multi-perspective Understanding[J].Journal of Sun Yat-sen University(Medical Sciences),2022,43(06):871-877. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0601.
随着婚育年龄推迟,大龄夫妇生育需求逐渐增加,生殖衰老成为社会发展面临的重要公共卫生问题。研究表明40~55岁可能为男性生育力的“分水岭”。然而,相比女性生殖衰老,男性生殖衰老特征缺乏鲜明特征,对机体的复杂影响表现为多方面。本篇综述中,我们从男性生殖内分泌、生殖腺,以及生殖附属性腺的衰老性变化角度,阐述对男性生殖衰老特征的认识。
With the postponement of marriage and childbirth age and the opening of the "three child" policy, the reproductive demand of advanced ages is increasing, and reproductive aging has become an important public health issue facing social development. Previous studies have shown that 40~55 years old may be the "watershed" of male fertility during aging. However, compared with female reproductive aging, male reproductive aging lacks distinctive characteristics, and its impact on the elderly men is multifaceted. In this review, we elaborated our understanding of the male reproductive aging from multiple perspectives of aging-related changes in male reproductive endocrine, gonads, and accessory sex glands.
男性生殖衰老生育力生殖内分泌附属性腺
male reproductive agingfertilityreproductive endocrineaccessory sex glands
Beard JR, Officer A, de Carvalho IA, et al. The World report on ageing and health: a policy framework for healthy ageing[J]. Lancet, 2016, 387(10033): 2145-2154.
国务院第七次全国人口普查领导小组办公室. 中国人口普查年鉴-2020[M]. 北京: 中国统计出版社, 2022.
The Leading Group Office for the Seventh National Census of the State Council. China's Census Yearbook-2020 [M]. Beijing: China Statistics Press, 2022.
Bray I, Gunnell D, Davey Smith G. Advanced paternal age: how old is too old?[J]. J Epidemiol Community Health, 2006, 60(10): 851-853.
Tilly JL, Sinclair DA. Germline energetics, aging, and female infertility[J]. Cell Metab, 2013, 17(6): 838-850.
Snyder PJ. Chapter 15 - Male Reproductive Aging. In: Jerome F. Strauss RLB ed. Yen & Jaffe's Reproductive Endocrinology. 8th ed [M]. Netherlands. Elsevier, 2019: 357-364.e2.
Halpern JA, Brannigan RE. Testosterone deficiency[J]. JAMA, 2019, 322(11): 1116.
Salonia A, Rastrelli G, Hackett G, et al. Paediatric and adult-onset male hypogonadism[J]. Nat Rev Dis Primers, 2019, 5(1): 37.
Surampudi PN, Wang C, Swerdloff R. Hypogonadism in the aging male diagnosis, potential benefits, and risks of testosterone replacement therapy[J]. Int J Endocrinol, 2012, 2012: 625434.
Sun K, Liang GQ, Chen XF, et al. Survey for late-onset hypogonadism among old and middle-aged males in Shanghai communities[J]. Asian J Androl, 2012, 14(2): 338-340.
Liu ZY, Zhou RY, Lu X, et al. Identification of late-onset hypogonadism in middle-aged and elderly men from a community of China[J]. Asian J Androl, 2016, 18(5): 747-753.
Liu YJ, Shen XB, Yu N, et al. Prevalence of late-onset hypogonadism among middle-aged and elderly males in China: results from a national survey[J]. Asian J Androl, 2021, 23(2): 170-177.
Li H, Gu Y, Shang X, et al. Decreased testosterone secretion index and free testosterone level with multiple symptoms for late-onset hypogonadism identification: a nationwide multicenter study with 5980 aging males in China[J]. Aging (Albany NY), 2020, 12(24): 26012-26028.
Zirkin BR, Papadopoulos V. Leydig cells: formation, function, and regulation[J]. Biol Reprod, 2018, 99(1): 101-111.
Midzak AS, Chen H, Papadopoulos V, et al. Leydig cell aging and the mechanisms of reduced testosterone synthesis[J]. Mol Cell Endocrinol, 2009, 299(1): 23-31.
Basaria S. Male hypogonadism[J]. Lancet, 2014, 383(9924): 1250-1263.
Toscano-Guerra E, Martínez-Gallo M, Arrese-Muñoz I, et al. Recovery of serum testosterone levels is an accurate predictor of survival from COVID-19 in male patients[J]. BMC Med, 2022, 20(1): 129.
Dhindsa S, Zhang N, McPhaul MJ, et al. Association of circulating sex hormones with inflammation and disease severity in patients with COVID-19[J]. JAMA Netw Open, 2021, 4(5): e2111398.
Khodamoradi K, Khosravizadeh Z, Parmar M, et al. Exogenous testosterone replacement therapy versus raising endogenous testosterone levels: current and future prospects[J]. F S Rev, 2021, 2(1): 32-42.
Zang ZJ, Wang J, Chen Z, et al. Transplantation of CD51+ stem Leydig cells: a new strategy for the treatment of testosterone deficiency[J]. Stem Cells, 2017, 35(5): 1222-1232.
Xia K, Chen H, Wang J, et al. Restorative functions of autologous stem Leydig cell transplantation in a testosterone-deficient non-human primate model[J]. Theranostics, 2020, 10(19): 8705-8720.
Feng X, Xia K, Ke Q, et al. Transplantation of encapsulated human Leydig-like cells: a novel option for the treatment of testosterone deficiency[J]. Mol Cell Endocrinol, 2021, 519: 111039.
Goldman AL, Bhasin S, Wu F, et al. A reappraisal of testosterone's binding in circulation: physiological and clinical implications[J]. Endocr Rev, 2017, 38(4): 302-324.
Tsametis CP, Isidori AM. Testosterone replacement therapy: for whom, when and how?[J]. Metabolism, 2018, 86: 69-78.
Handelsman DJ. Testosterone and male aging: faltering hope for rejuvenation[J]. JAMA, 2017, 317(7): 699-701.
Sharma R, Oni OA, Gupta K, et al. Normalization of testosterone level is associated with reduced incidence of myocardial infarction and mortality in men[J]. Eur Heart J, 2015, 36(40): 2706-2715.
Budoff MJ, Ellenberg SS, Lewis CE, et al. Testosterone treatment and coronary artery plaque volume in older men with low testosterone[J]. JAMA, 2017, 317(7): 708-716.
Resnick SM, Matsumoto AM, Stephens-Shields AJ, et al. Testosterone treatment and cognitive function in older men with low testosterone and age-associated memory impairment[J]. JAMA, 2017, 317(7): 717-727.
Watts NB, Adler RA, Bilezikian JP, et al. Osteoporosis in men: an Endocrine Society clinical practice guideline[J]. J Clin Endocrinol Metab, 2012, 97(6): 1802-1822.
Giannoulis MG, Martin FC, Nair KS, et al. Hormone replacement therapy and physical function in healthy older men. Time to talk hormones?[J]. Endocr Rev, 2012, 33(3): 314-377.
Vermeulen A, Kaufman JM, Goemaere S, et al. Estradiol in elderly men[J]. Aging Male, 2002,5(2): 98-102.
Ferlin A, Selice R, Carraro U, et al. Testicular function and bone metabolism--beyond testosterone[J]. Nat Rev Endocrinol, 2013, 9(9): 548-554.
Chong YH, Pankhurst MW, McLennan IS. The testicular hormones AMH, InhB, INSL3, and testosterone can be independently deficient in older men[J]. J Gerontol A Biol Sci Med Sci, 2017, 72(4): 548-553.
Nilsson EE, Maamar MB, Skinner MK. Environmentally induced epigenetic transgenerational inheritance and the weismann barrier: the dawn of Neo-Lamarckian theory[J]. J Dev Biol, 2020, 8(4): 28.
Sabour D, Schöler HR. Reprogramming and the mammalian germline: the Weismann Barrier revisited[J]. Curr Opin Cell Biol, 2012, 24(6): 716-723.
Levine H, Jørgensen N, Martino-Andrade A, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis[J]. Hum Reprod Update, 2017, 23(6): 646-659.
Ljubuncic P, Reznick AZ. The evolutionary theories of aging revisited--a mini-review[J]. Gerontology, 2009, 55(2): 205-216.
Calarco JP, Borges F, Donoghue MT, et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA[J]. Cell, 2012, 151(1): 194-205.
Stone BA, Alex A, Werlin LB, et al. Age thresholds for changes in semen parameters in men[J]. Fertil Steril, 2013, 100(4): 952-958.
Levitas E, Lunenfeld E, Weisz N, et al. Relationship between age and semen parameters in men with normal sperm concentration: analysis of 6022 semen samples[J]. Andrologia, 2007, 39(2): 45-50.
de La Rochebrochard E, Thonneau P. Paternal age >or=40 years: an important risk factor for infertility[J]. Am J Obstet Gynecol, 2003, 189(4): 901-905.
Hassan MA, Killick SR. Effect of male age on fertility: evidence for the decline in male fertility with increasing age[J]. Fertil Steril, 2003, 79 Suppl 3: 1520-1527.
Alio AP, Salihu HM, McIntosh C, et al. The effect of paternal age on fetal birth outcomes[J]. Am J Mens Health, 2012, 6(5): 427-435.
Paoli D, Pecora G, Pallotti F, et al. Cytological and molecular aspects of the ageing sperm[J]. Hum Reprod, 2019, 34(2): 218-227.
Jónsson H, Sulem P, Kehr B, et al. Parental influence on human germline de novo mutations in 1,548 trios from Iceland[J]. Nature, 2017, 549(7673): 519-522.
D'Onofrio BM, Rickert ME, Frans E, et al. Paternal age at childbearing and offspring psychiatric and academic morbidity[J]. JAMA Psychiatry, 2014, 71(4): 432-438.
Potabattula R, Zacchini F, Ptak GE, et al. Increasing methylation of sperm rDNA and other repetitive elements in the aging male mammalian germline[J]. Aging Cell, 2020, 19(8): e13181.
张欣宗, 朱文兵, 黄川, 等. 关于筛查合格供精志愿者的标准更新的中国专家共识[J]. 中国计划生育和妇产科, 2021, 13(9): 7-10.
Zhang X, Zhu W, Huang C, et al. Chinese expert consensus on updating the criteria for screening qualified sperm donors[J]. Chinese Journal of Family Planning& Gynecology, 2021, 13(9): 7-10.
Alfano M, Tascini AS, Pederzoli F, et al. Aging, inflammation and DNA damage in the somatic testicular niche with idiopathic germ cell aplasia[J]. Nat Commun, 2021, 12(1): 5205.
Nie X, Munyoki SK, Sukhwani M, et al. Single-cell analysis of human testis aging and correlation with elevated body mass index[J]. Dev Cell, 2022, 57(9): 1160-1176.e5.
Huang Y, Li X, Sun X, et al. Anatomical transcriptome atlas of the male mouse reproductive system during aging[J]. Front Cell Dev Biol, 2021, 9: 782824.
Sepil I, Hopkins BR, Dean R, et al. Male reproductive aging arises via multifaceted mating-dependent sperm and seminal proteome declines, but is postponable in Drosophila[J]. Proc Natl Acad Sci U S A, 2020, 117(29): 17094-17103.
Gervasi MG, Visconti PE. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation[J]. Andrology, 2017, 5(2): 204-218.
James ER, Carrell DT, Aston KI, et al. The role of the epididymis and the contribution of epididymosomes to mammalian reproduction[J]. Int J Mol Sci, 2020, 21(15):5377.
Johnston DS, Jelinsky SA, Bang HJ, et al. The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis[J]. Biol Reprod, 2005, 73(3): 404-413.
Jelinsky SA, Turner TT, Bang HJ, et al. The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides[J]. Biol Reprod, 2007,76(4): 561-570.
Shi J, Fok KL, Dai P, et al. Spatio-temporal landscape of mouse epididymal cells and specific mitochondria-rich segments defined by large-scale single-cell RNA-seq[J]. Cell Discov, 2021, 7(1): 34.
Rinaldi VD, Donnard E, Gellatly K, et al. An atlas of cell types in the mouse epididymis and vas deferens[J]. Elife, 2020, 9: e55474.
Pino V, Sanz A, Valdés N, et al. The effects of aging on semen parameters and sperm DNA fragmentation[J]. JBRA Assist Reprod, 2020, 24(1): 82-86.
Beltramone F, Estofan G, Molina RI, et al. Impact of age, clinical conditions, and lifestyle on routine semen parameters and sperm kinematics.[J]. Fertil Steril, 2018, 110(1): 68-75.e4.
Vogiatzi P, Pouliakis A, Sakellariou M, et al. Male age and progressive sperm motility are critical factors affecting embryological and clinical outcomes in oocyte donor ICSI cycles[J]. Reprod Sci, 2022, 29(3): 883-895.
Brzechffa PR, Daneshmand S, Buyalos RP. Sequential clomiphene citrate and human menopausal gonadotrophin with intrauterine insemination: the effect of patient age on clinical outcome[J]. Hum Reprod, 1998, 13(8): 2110-2114.
Setti AS, Braga D, Vingris L, et al. Early and late paternal contribution to cell division of embryos in a time-lapse imaging incubation system[J]. Andrologia, 2021, 53(11): e14211.
Serre V, Robaire B. Segment-specific morphological changes in aging brown Norway rat epididymis[J]. Biol Reprod, 1998, 58(2): 497-513.
Jervis KM, Robaire B. Changes in gene expression during aging in the brown Norway rat epididymis[J]. Exp Gerontol, 2002, 37(7): 897-906.
Zubkova EV, Robaire B. Effect of glutathione depletion on antioxidant enzymes in the epididymis, seminal vesicles, and liver and on spermatozoa motility in the aging brown Norway rat[J]. Biol Reprod, 2004, 71(3): 1002-1008.
Hu SG, Zou M, Yao GX, et al. Androgenic regulation of beta-defensins in the mouse epididymis[J]. Reprod Biol Endocrinol, 2014, 12: 76.
0
浏览量
1
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构