图1 lncRNA和糖酵解对胃癌的作用
Published:20 July 2023,
Received:07 March 2023
Scan for full text
Cite this article
Long noncoding RNAs (LncRNAs), a class of noncoding RNAs greater than 200 bases in length, are widely involved in the initiation, progression and glycolytic processes of many tumors, and can act as competitive endogenous RNA sponges to absorb miRNAs. LncRNAs can also inhibit miRNA expression, thereby regulate the glycolysis of tumor cells, affects cell proliferation, invasion and other biological activities. This review explores the roles of LncRNAs and glycolysis in digestive system tumors (DST), a representative group of malignant tumors. Extending the LncRNA role in the diagnosis, treatment and prognosis of other tumors, we conclude that LncRNAs have the potential to be new candidate genes for tumorigenesis and serve as tumor biomarkers, which provides new insight into morbidity and mortality decrease of DST and other tumors.
恶性肿瘤因其初起隐匿,现有的检测手段还存在局限性,因此,寻求一种新型检测手段显得尤为紧迫。长链非编码RNAs(long noncoding RNAs,lncRNA)缺乏编码蛋白的能力,在癌症中常常异常表达,常作为竞争内源性RNA(competitive endogenous RNA, ceRNA)海绵吸收特定miRNAs,靶向这些miRNAs下游的分子。事实上,lncRNA还可以通过与蛋白质或RNAs相互结合形成复合物的方式调控肿瘤细胞的活性,通过影响染色质的结构,使调节基因表达[
胃癌(gastric cancer, GC)是全球第5大常见癌症,居我国恶性肿瘤发病率及死亡率的第 2 位。早期GC症状不易发现,出现较明显的症状时已经到了中晚期,因此GC患者大多数愈后都很差,其5年的生存率往往不超过50%[
图1 lncRNA和糖酵解对胃癌的作用
Fig. 1 Role of lncRNA and glycolysis in gastric cancer
Sun等[
Xu等[
内窥镜检查、手术和标准化疗是近年来临床上用于GC诊断、治疗常用的方法,也有效的提高了胃癌患者5年生存率,但晚期和转移的患者预后仍然较差,因此寻求新的靶点和阐明GC的发病机制是很有意义的。lncRNA H19[
肝细胞癌(hepatocellular carcinoma, HCC)是世界范围内最常见的恶性肿瘤之一[
图2 lncRNA和糖酵解对肝细胞癌的作用
Fig. 2 Role of lncRNA and glycolysis in hepatocellular carcinoma
研究发现,PKM2发挥关键的作用,E2F1激活的SNHG1调节miR-326/PKM2轴促进PKM2的表达,促进糖酵解和HCC细胞增殖[
大量研究发现,人类表皮生长因子受体(human epidermal growth factor receptor, ErbB)2通过激活热休克因子1,进而上调LDHA来发挥Warburg效应,其启动子可与转录因子NKX2-5结合,导致负调控作用。lncRNA ENST00000570843.1(lncENST)通过NKX2-5/ErbB2轴直接结合并激活转录因子NKX2-5,其活性损害ErbB2基因的转录,下调ErbB2蛋白的表达,从而抑制射频消融(radiofrequency ablation, RFA)后残留HCC细胞的Warburg效应[
尽管在诊断和治疗方面取得了进展,但由于肝癌的高复发率和远处转移率,其总体预后仍然非常低,寻找有效的治疗靶点和复发预测因子是当务之急[
结直肠癌(colorectal cancer, CRC)是世界范围内最常见的消化道癌症之一,在恶性肿瘤中的发病率和死亡率分别为第3位和第2位[
图3 lncRNA和糖代谢对结直肠癌的作用
Fig. 3 Role of lncRNA and glucose metabolism in colorectal cancer
HK1、HK2、PKM1和PKM2等关键酶的表达对CRC细胞糖酵解至关重要。高表达的MIR17HG预示着生存不良,MIR17HG作为ceRNA与miR-138-5p结合调节己糖激酶1(HK1)的表达,导致CRC肝转移(colorectal cancer liver metastasis, CRLM)细胞糖酵解、细胞浸润,又通过糖酵解积累的乳酸激活p38/ELK-1轴,形成正反馈回路促进CRC细胞MIR17HG的转录表达,持续增强CRC进展[
研究表明,lncRNA垂体肿瘤转化3,假基因(PTTG3P)通过调节HIF1A/PTTG3P/YAP1轴促进其巨噬细胞增殖、糖酵解,诱导巨噬细胞M2极化[
肝转移是CRC患者预后不良的主要原因之一,转移性CRC多采用化疗为主的治疗策略,研究发现MIR17HG[
食管癌(esophageal cancer, EC)是世界范围内常见的侵袭性恶性肿瘤,临床疗效不佳。另外,胰腺癌(pancreatic cancer, PC)是一种高度致命的恶性肿瘤,诊断晚,预后差,总的5年生存率小于8%[
PTPRG-AS1通过PTPRG-AS1/miR-599/丙酮酸脱氢酶激酶1(PDK1)轴海绵miR-599上调PDK1的表达促进食管鳞状细胞癌(Esophageal squamous cell carcinoma, ESCC)的增殖、迁移和糖酵解[
TMEM161b-AS1过表达能改善ESCC患者预后,TMEM161B-AS1吸收miR-23a-3p后能通过靶向miR-23a-3p/HIF1AN轴增强HIF1AN的表达抑制糖酵解关键酶己糖激酶2(HK2)、磷酸果糖激酶(PFK)亚型PFKM、乳酸脱氢酶A(LDHA)和转录因子HIF1A的表达进而阻碍ESCC的增殖、侵袭和糖酵解,TMEM161B-AS1/miR-23a-3p/HIF1AN信号轴可能是治疗ESCC患者的一个有希望的靶点[
ESCC转移能力强,是一类新型癌症。lncRNA作为ceRNA通过吸收miRNA调控ESCC细胞有氧糖酵解是现在研究ESCC主要的治疗途径。PTPRG-AS1[
lncRNA在DST能量代谢中通过参与转运体,关键酶,miRNAs、信号通路及其他调控,直接或间接的影响DST糖酵解,继而影响DST的恶性生物学行为。糖酵解与肿瘤的发生发展密不可分,阻断糖酵解途径,能有效地抑制DST细胞增殖,甚至杀死DST细胞,因此,糖酵解相关酶很有可能是一个新的潜在治疗靶点。同时,lncRNA对DST能量代谢调控的分子机制促使我们对肿瘤进展有了更进一步的认知。以上调控机制不仅可以适用于DST,我们认为或许这种认知还可以广泛的运用到其他的肿瘤中去,对今后攻克临床癌症耐药细胞的治疗或者寻找非手术治疗癌症方法具有积极的影响。通过已发现的转录因子及其衍生的lncRNA可以靶向协同调控DST的进展,但lncRNA介导不同的转录因子之间直接或间接、合作或拮抗调控DST糖酵解的机制仍需进一步挖掘。我们猜想lncRNA之间是否可以建立某种联系共同调控DST的表达;其次lncRNA与药物互相作用靶向精准调控DST耐药的机制也有待研究;低氧和常氧环境下所造成的复杂微环境影响不同的转录因子对DST表达的调控机制等一系列问题都需要进一步探究。另外,lncRNA对肿瘤治疗所建立的基因分子调控机制仍然存在一定限制,由于研究只是在生物学实验中经过严格控制的肿瘤微环境、稳定的实验目标对象等一系列实验定量操作实现调控肿瘤活性的目的,对于一些比较宽松的环境条件则有可能受到干扰导致lncRNA对肿瘤的调控效果减弱甚至消失,而事实上临床上不确定的因素是非常之多的,例如患者对肿瘤的应激产生的内分泌失调能够导致一系列的体内外反应,我们猜测这类反应或者因器官损伤带来的负面效应等一系列不确定的因素有可能影响lncRNA的最终调控效果,所以lncRNA更适合作为调控药物的靶标,影响细胞对药物的敏感性,而不是直接作用到人体通过扰乱体内基因或蛋白质来影响肿瘤的生物学活性。随着近些年对lncRNA与糖酵解作用于肿瘤研究的深入,运用lncRNAs作为“海绵”与miRNA竞争性结合,降低miRNA抑制目的基因这一“ceRNA”作用机制促使人们对lncRNA的作用有了更新的认识,它对肿瘤能量代谢调控的分子机制将得以阐明并且为今后肿瘤的诊断及靶向治疗提供新的思路。
Goodall GJ, Wickramasinghe VO. RNA in cancer[J]. Nat Rev Cancer, 2021, 21(1): 22-36. [Baidu Scholar]
Warburg O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314. [Baidu Scholar]
崔昊, 曹博, 邓欢, 等. 早期胃癌淋巴结转移的列线图预测模型[J]. 中华胃肠外科杂志, 2022, 25(1): 40-47. [Baidu Scholar]
Cui H, Cao B, Deng H, et al. A nomogram for predicting lymph node metastasis in early gastric cancer[J]. Chin J Gastrointest Surg, 2022, 25(1): 40-47. [Baidu Scholar]
Sun L, Li J, Yan W, et al. H19 promotes aerobic glycolysis, proliferation, and immune escape of gastric cancer cells through the microRNA-519d-3p/lactate dehydrogenase a axis[J]. Cancer Sci, 2021, 112(6): 2245-2259. [Baidu Scholar]
Pei LJ, Sun PJ, Ma K, et al. LncRNA-SNHG7 interferes with miR-34a to de-sensitize gastric cancer cells to cisplatin[J]. Cancer Biomark, 2021, 30(1): 127-137. [Baidu Scholar]
Hu J, Huang L, Ding Q, et al. Long noncoding RNA HAGLR sponges miR-338-3p to promote 5-Fu resistance in gastric cancer through targeting the LDHA-glycolysis pathway[J]. Cell Biol Int, 2022, 46(2): 173-184. [Baidu Scholar]
Qian Y, Song W, Wu X, et al. DLX6 antisense RNA 1 modulates glucose metabolism and cell growth in gastric cancer by targeting microRNA-4290[J]. Dig Dis Sci, 2021, 66(2): 460-473. [Baidu Scholar]
Deng P, Li K, Gu F, et al. LINC00242/miR-1-3p/G6PD axis regulates warburg effect and affects gastric cancer proliferation and apoptosis[J]. Mol Med, 2021, 27(1): 9. [Baidu Scholar]
Dai T, Zhang X, Zhou X, et al. Long non-coding RNA VAL facilitates PKM2 enzymatic activity to promote glycolysis and malignancy of gastric cancer[J]. Clin Transl Med, 2022, 12(10): e1088. [Baidu Scholar]
Xu Z, Lv H, Wang Y, et al. HAND2-AS1 inhibits gastric adenocarcinoma cells proliferation and aerobic glycolysis via miRNAs sponge[J]. Cancer Manag Res, 2020, 12: 3053-3068. [Baidu Scholar]
Yan B, Ren Z, Sun J, et al. IGF2-AS knockdown inhibits glycolysis and accelerates apoptosis of gastric cancer cells through targeting miR-195/CREB1 axis[J]. Biomed Pharmacother, 2020, 130: 110600. [Baidu Scholar]
Tan H Y, Wang C, Liu G, et al. Long noncoding RNA NEAT1-modulated miR-506 regulates gastric cancer development through targeting STAT3[J]. J Cell Biochem, 2019, 120(4): 4827-4836. [Baidu Scholar]
Zhang H, Shen X, Xiong S, et al. HEIH promotes malignant progression of gastric cancer by regulating STAT3-mediated autophagy and glycolysis[J]. Dis Markers, 2022: 2634526. [Baidu Scholar]
邓欢, 曹博, 崔昊, 等. 敲低长链非编码RNA CCAT2抑制胃癌细胞的糖代谢重编程和增殖能力[J]. 解放军医学院学报, 2021, 42(11): 1157-1162. [Baidu Scholar]
Deng H, Cao B, Cui H, et al. Effect of lncRNA CCAT2 knockdown on glucose metabolic reprogramming and proliferation of gastric cancer cells[J]. Acad J Chin Pla Med Sch, 2021, 42(11): 1157-1162. [Baidu Scholar]
Li M, Cai O, Yu Y, et al. Paeonol inhibits the malignancy of apatinib-resistant gastric cancer cells via LINC00665/miR-665/MAPK1 axis[J]. Phytomedicine, 2022, 96: 153903. [Baidu Scholar]
严成, 陈新国, 金海龙, 等. 基于术前血清学指标AFP和GGT的标准在预测肝细胞癌患者肝移植术后长期生存中的作用研究[J]. 器官移植, 2023, 14(2): 248-256. [Baidu Scholar]
Yan C, Chen XG, Jin HL, et al. Role of the criteria based on preoperative serological indexes of AFP and GGT in predicting long-term survival of patients with hepatocellular carcinoma after liver transplantation[J]. Organ Transp, 2023, 14(2): 248-256. [Baidu Scholar]
Wang Y, Yang F, Peng Q, et al. Long non-coding RNA SNHG1 activates glycolysis to promote hepatocellular cancer progression through the miR-326/PKM2 axis[J]. J Gene Med, 2022, 24(8): e3440. [Baidu Scholar]
Guan YF, Huang QL, Ai YL, et al. Nur77-activated lncRNA WFDC21P attenuates hepatocarcinogenesis via modulating glycolysis[J]. Oncogene, 2020, 39(11): 2408-2423. [Baidu Scholar]
Wang C, Li Y, Yan S, et al. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2[J]. Nat Commun, 2020, 11(1): 3162. [Baidu Scholar]
Shang R, Wang M, Dai B, et al. Long noncoding RNA SLC2A1-AS1 regulates aerobic glycolysis and progression in hepatocellular carcinoma via inhibiting the STAT3/FOXM1/GLUT1 pathway[J]. Mol Oncol, 2020, 14(6): 1381-1396. [Baidu Scholar]
Chen G, Jiang J, Wang X, et al. lncENST suppress the warburg effect regulating the tumor progress by the Nkx2-5/ErbB2 axis in hepatocellular carcinoma[J]. Comput Math Methods Med, 2021: 6959557. [Baidu Scholar]
Hu M, Fu Q, Jing C, et al. LncRNA HOTAIR knockdown inhibits glycolysis by regulating miR-130a-3p/HIF1A in hepatocellular carcinoma under hypoxia[J]. Biomed Pharmacother, 2020, 125: 109703. [Baidu Scholar]
Zhang H, Su X, Burley SK, et al. mTOR regulates aerobic glycolysis through NEAT1 and nuclear paraspeckle-mediated mechanism in hepatocellular carcinoma[J]. Theranostics, 2022, 12(7): 3518-3533. [Baidu Scholar]
He H, Chen T, Mo H, et al. Hypoxia-inducible long noncoding RNA NPSR1-AS1 promotes the proliferation and glycolysis of hepatocellular carcinoma cells by regulating the MAPK/ERK pathway[J]. Biochem Biophys Res Commun, 2020, 533(4): 886-892. [Baidu Scholar]
Ma X, Mao Z, Zhu J, et al. lncRNA PANTR1 upregulates BCL2A1 expression to promote tumorigenesis and warburg effect of hepatocellular carcinoma through restraining miR-587[J]. J Immunol Res, 2021: 1736819. [Baidu Scholar]
姚智航, 张凯, 骆银根, 等. 热消融与手术切除治疗异时性结直肠癌肝转移的临床疗效比较[J]. 四川大学学报(医学版), 2022, 53(3): 481-487. [Baidu Scholar]
Yao ZH Zhang K, Luo YY, et al. Comparison of clinical efficacy of thermal ablation vs. surgical resection of metachronous colorectal liver metastasis[J]. J Sichuan Univ (Med Sci), 2022, 53(3): 481-487. [Baidu Scholar]
Zhao S, Guan B, Mi Y, et al. LncRNA MIR17HG promotes colorectal cancer liver metastasis by mediating a glycolysis-associated positive feedback circuit[J]. Oncogene, 2021, 40(28): 4709-4724. [Baidu Scholar]
Chen C, Wei M, Wang C, et al. Long noncoding RNA KCNQ1OT1 promotes colorectal carcinogenesis by enhancing aerobic glycolysis via hexokinase-2[J]. Aging, 2020, 12(12): 11685-11697. [Baidu Scholar]
Yan T, Shen C, Jiang P, et al. Risk SNP-induced lncRNA-SLCC1 drives colorectal cancer through activating glycolysis signaling[J]. Signal Transduct Target Ther, 2021, 6(1): 70. [Baidu Scholar]
Shi H, Li K, Feng J, et al. LncRNA-DANCR interferes with miR-125b-5p/HK2 axis to desensitize colon cancer cells to cisplatin vis activating anaerobic glycolysis[J]. Front Oncol, 2020, 10: 1034. [Baidu Scholar]
Lan Z, Yao X, Sun K, et al. The interaction between lncRNA SNHG6 and hnRNPA1 contributes to the growth of colorectal cancer by enhancing aerobic glycolysis through the regulation of alternative splicing of PKM[J]. Front Oncol, 2020, 10: 363. [Baidu Scholar]
Zheng H, Zhang M, Ke X, et al. LncRNA XIST/miR-137 axis strengthens chemo-resistance and glycolysis of colorectal cancer cells by hindering transformation from PKM2 to PKM1[J]. Cancer Biomark, 2021, 30(4): 395-406. [Baidu Scholar]
Cui K, Wu H, Fan J, et al. The mixture of ferulic acid and P-coumaric acid suppresses colorectal cancer through lncRNA 495810/PKM2 mediated aerobic glycolysis[J]. Int J Mol Sci, 2022, 23(20): 12106. [Baidu Scholar]
Wang Y, Yu G, Liu Y, et al. Hypoxia-induced PTTG3P contributes to colorectal cancer glycolysis and M2 phenotype of macrophage[J]. Biosci Rep, 2021, 41(7): BSR20210764. [Baidu Scholar]
Sun S, Li W, Ma X, et al. Long noncoding RNA LINC00265 promotes glycolysis and lactate production of colorectal cancer through regulating of miR-216b-5p/TRIM44 axis[J]. Digestion, 2020, 101(4): 391-400. [Baidu Scholar]
Yu Z, Wang Y, Deng J, et al. Long non-coding RNA COL4A2-AS1 facilitates cell proliferation and glycolysis of colorectal cancer cells via miR-20b-5p/hypoxia inducible factor 1 alpha subunit axis[J]. Bioengineered, 2021, 12(1): 6251-6263. [Baidu Scholar]
Wang Y, Lu JH, Wu QN, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer[J]. Mol Cancer, 2019, 18(1): 174. [Baidu Scholar]
Tang J, Yan T, Bao Y, et al. LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-myc[J]. Nat Commun, 2019, 10(1): 3499. [Baidu Scholar]
Li C, Wang P, Du J, et al. LncRNA RAD51-AS1/miR-29b/c-3p/NDRG2 crosstalk repressed proliferation, invasion and glycolysis of colorectal cancer[J]. IUBMB Life, 2021, 73(1): 286-298. [Baidu Scholar]
Zhang Z, Yang W, Li N, et al. LncRNA MCF2L-AS1 aggravates proliferation, invasion and glycolysis of colorectal cancer cells via the crosstalk with miR-874-3p/FOXM1 signaling axis[J]. Carcinogenesis, 2021, 42(2): 263-271. [Baidu Scholar]
Guo X, Zhang Y, Liu L, et al. HNF1A-AS1 regulates cell migration, invasion and glycolysis via modulating miR-124/MYO6 in colorectal cancer cells[J]. Onco Targets Ther, 2020, 13: 1507-1518. [Baidu Scholar]
Li YL, Zhang XX, Yao JN, et al. ZEB2-AS1 regulates the expression of TAB3 and promotes the development of colon cancer by adsorbing microRNA-188[J]. Eur Rev Med Pharmacol Sci, 2020, 24(8): 4180-4189. [Baidu Scholar]
Wang X, Zhang H, Yin S, et al. lncRNA-encoded pep-AP attenuates the pentose phosphate pathway and sensitizes colorectal cancer cells to Oxaliplatin[J]. EMBO Rep, 2022, 23(1): e53140. [Baidu Scholar]
马林, 邓大炜, 兰川, 等. 炭疽毒素受体2表达受miR-145-5p调控在胰腺癌的作用机制研究[J]. 重庆医科大学学报, 2023, 48(3): 261-268. [Baidu Scholar]
Ma L, Deng DW, Lan C, et al. Mechanism of anthrax toxin receptor 2 expression regulated by miR-145-5p inpancreatic cancer[J]. J Chongqing Med Univ, 2023, 48(3): 261-268. [Baidu Scholar]
Wu K, Wang Z, Huang Y, et al. LncRNA PTPRG-AS1 facilitates glycolysis and stemness properties of esophageal squamous cell carcinoma cells through miR-599/PDK1 axis[J]. J Gastroenterol Hepatol, 2022, 37(3): 507-517. [Baidu Scholar]
Vargas RE, Wang W. Significance of long non-coding RNA AGPG for the metabolism of esophageal cancer[J]. Cancer Commun (Lond), 2020, 40(7): 313-315. [Baidu Scholar]
Yu T, Li G, Wang C, et al. MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis[J]. RNA Biol, 2021, 18(12): 2513-2530. [Baidu Scholar]
Shi Z, Li G, Li Z, et al. TMEM161B-AS1 suppresses proliferation, invasion and glycolysis by targeting miR-23a-3p/HIF1AN signal axis in oesophageal squamous cell carcinoma[J]. J Cell Mol Med, 2021, 25(14): 6535-6549. [Baidu Scholar]
Zhai S, Xu Z, Xie J, et al. Epigenetic silencing of lncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1[J]. Oncogene, 2021, 40(2): 277-291. [Baidu Scholar]
Xu F, Huang M, Chen Q, et al. LncRNA HIF1A-AS1 promotes gemcitabine resistance of pancreatic cancer by enhancing glycolysis through modulating the AKT/YB1/HIF1α pathway[J]. Cancer Res, 2021, 81(22): 5678-5691. [Baidu Scholar]
0
Views
3
Downloads
0
CSCD
Related Articles
Related Author
Related Institution