Published:20 July 2023,
Received:29 August 2022
Scan for full text
Cite this article
To compare the changes of retinal microcirculation indexes in the anterior and posterior macular areas of the eyes used at close range and to explore the possible causes of myopia affected by near work.
Watching mobile phone video for 1 hour at close range was used as the method of defining near work. The OCTA technology was used to measure the superficial retinal microcirculation indexes within 6 by 6 mm macular area before and after near work, including the superficial retinal VLD from the nerve fiber layer to the inner boundary of the outer plexiform layer, the VPD, nonperfusion area of FAZ, FAZ-P and FAZ circulation,. The FAZ was divided int center, inner layer, outer layer and overall according to the region, and 11 microcirculation indexes were obtained to compare the differences between before and after near work.
The indexes of superficial retinal microcirculation in the macular area generally decreased after near work, except for FAZ-A and FAZ-P(P = 0.148, 0.975). The largest differences among both VLD and VPD occurred between the central and inner layer(Difference = 1.00, 0.80, 0.02, 0.02,P = 0.001, 0.008, 0.001, 0.008). No differences in microcirculation indexs were observed in the macular area after near work with different diopters and axial lengths.
Near work may affect the occurrence and development of myopia by affecting the changes of retinal microcirculation in the superficial layer of macula, leading to ischemia and hypoxia.
近视是目前常见的屈光不正,全球约14.5亿人患有近视,发病率高达22%,而预计到2050年,全球的患病率将增加到49.8%[
选取2021年4月-2021年6月在广州中医药大学第一附属医院屈光门诊就诊的18~30岁青年近视患者,共收集61例61眼。纳入标准:①经医学验光确诊为屈光不正;②矫正视力≥1.0;③眼压为10 ~ 21 mmHg;④能够理解及配合检查。排除标准:①眼底出现明显的脉络膜萎缩、脉络膜新生血管、漆裂纹等病理性近视者;②高血压、糖尿病及心脑血管等严重的先天性疾病;③斜视、弱视等视觉功能障碍;④伴有白内障、青光眼等先天性眼部疾患;⑤屈光间质混浊影响检查;⑥无法理解检查,配合欠佳,结果不可信;⑦怀孕或计划在未来3个月内怀孕者;⑧参与其他临床试验者。本研究经医院伦理委员会批准,伦理审批号为NO.K[2021]001,征得患者知情同意,并签署知情同意书。
所有患者均采用综合验光仪验光(NIDEK RT-5 100),由同一名验光师完成。先使用电脑验光仪(TOPCON KR-800)得出客观验光度数,将度数输入综合验光仪,先右眼后左眼进行主觉验光,验光步骤如下:初步MPMVA,交叉圆柱镜验证散光,再次MPMVA,双眼平衡,双眼MPMVA。
采用光学相干断层扫描血管成像(optical coherence tomography angiography,OCTA)技术,由同一名技师完成。用蔡司光学相干断层扫描仪Cirrus HD-OCT5 000进行测量,检查时间统一为下午3:00~5:00之间,在自然瞳孔下完成。患者取自然体位,调整好位置,选择Angiography 6 mm × 6 mm扫描模式,开启测量模式,先测量右眼后测量左眼,并将数据导入FORUM系统,基于OMAG技术的AngioPlexTM软件会自动将黄斑区6 mm范围内视网膜划分为以黄斑中心凹为中心的3个同心圆,分别是直径为1 mm的中心区,1 ~ 3 mm的内层,3 ~ 6 mm的外层,记录内层、外层、中心区及6 mm范围内整体的浅层(神经纤维层至外丛状层内界)视网膜血管长度密度(vascular length density,VLD)、血管灌注密度(vascular perfusion density,VPD)及黄斑中心凹无灌注区(foveal avascular zone,FAZ)的面积(FAZ area,FAZ-A)、周长(FAZ perimeter,FAZ-P)、形态指数(FAZ circularity,FAZ-CI),共11项微循环指标。
采用观看手机视频的方式,由同一名医师监测全过程,时间统一为下午3:00~5:00之间,观看环境舒适,灯光柔和,不宜太亮或太暗。患者取坐位,保持舒适的体位,手机放置与地面垂直,屏幕中心低于眼睛注视水平15°,注视角度比水平线低15°;手机选用屏幕为5.5英寸的iphone 6s plus;视频的内容由观看者自行挑选感兴趣的内容,保证全程无注意力分散的情况出现,视频为横屏播放;观看的距离始终保证在30 cm;观看时间为连续1 h。
综合验光仪验光获取准确的屈光度,行OCTA检查,获取用眼前的黄斑区浅层视网膜微循环指标,根据验光结果佩戴合适的框架眼镜,近距离观看手机视频1 h后再次行OCTA检查,获取用眼后的黄斑区浅层视网膜微循环指标,将用眼前后的OCTA数据进行对比,观察其差异性。双眼数据的处理:等效球镜不一致,选取近视度数较高的一眼作为研究对象;等效球镜一致,选择主视眼作为研究对象。
采用SPSS 25.0统计软件。根据正态分布情况,阅读前、阅读后及阅读前后各项血管参数采用均数和标准差或用中位数和四分位数,即M(P25 ~ P75)描述。阅读前后各血管参数的变化情况根据正态分布情况采用配对t检验或配对秩和检验进行分析。α = 0.05,P < 0.05为差异有统计学意义。
共收集61例61眼,其中男13例13眼(21.31%),女48例48眼(78.69%);年龄19~30岁,中位年龄为23.00(21.00 ~ 26.00)岁;中位等效球镜(spherical equivalent SE)为-3.63(-5.81,-2.25)D,其中SE > -3.00 D 20眼(32.80%),SE ≤ -3.00D 41眼(67.20%);中位眼轴(axial length AL)24.84(24.16, 25.82)mm,其中眼轴 < 25 mm 33眼(54.10%),眼轴≥ 25 mm 28眼(45.90%)。
仅用眼前中心VLD、中心VPD、FAZ-A和用眼后中心VLD、中心VPD、FAZ-A、FAZ-P符合正态性分布,其他均不符合正态性分布,由于大部分指标不符合正态性分布,故分析中统一使用中位数和四分位数间距进行描述。
由
Item | Before | After | Difference | Z | P |
---|---|---|---|---|---|
Central VLD1) | 7.30(5.70,9.00) | 4.45(6.20,8.05) | 1.00(-0.40,2.90) | 3.518 | 0.001 |
Inner layer VLD1) | 17.70(16.35,18.50) | 15.00(16.70,17.95) | 0.80(-0.65,2.00) | 2.672 | 0.008 |
Outer layer VLD1) | 18.30(17.30,19.00) | 16.80(17.90,18.40) | 0.40(-0.40,1.40) | 2.216 | 0.034 |
Whole VLD1) | 17.70(16.75,18.65) | 16.10(17.30,17.80) | 0.40(-0.30,1.60) | 2.395 | 0.017 |
Central VPD1) | 0.16(0.12,0.20) | 0.09(0.14,0.17) | 0.02(-0.01,0.07) | 3.406 | 0.001 |
Inner layer VPD1) | 0.42(0.39,0.44) | 0.35(0.39,0.42) | 0.02(-0.02,0.05) | 2.658 | 0.008 |
Outer layer VPD1) | 0.45(0.43,0.47) | 0.41(0.44,0.46) | 0.01(-0.01,0.04) | 2.231 | 0.026 |
Whole VPD1) | 0.43(0.41,0.45) | 0.39(0.42,0.43) | 0.01(-0.01,0.04) | 2.258 | 0.011 |
FAZ-A | 0.31(0.21,0.38) | 0.21(0.28,0.35) | 0.01(-0.03,0.06) | 1.447 | 0.148 |
FAZ-P | 2.29(1.91,2.52) | 1.90(2.24,2.60) | 0.00(-0.18,0.18) | -0.032 | 0.975 |
FAZ-CI1) | 0.76(0.71,0.80) | 0.68(0.72,0.75) | 0.04(-0.03,0.09) | 2.859 | 0.004 |
1)Compared with before near work, indexes of superficial retinal microcirculation in the macular area after near work were generally reduced, P < 0.05.
由
Item | SE<-3.00 D | SE≥-3.00 D | Z | P |
---|---|---|---|---|
Central VLD | 2.45(0.15,3.18) | 0.90(-0.95,2.15) | -1.667 | 0.095 |
Inner layer VLD | 1.40(-0.95,2.40) | 0.60(-0.65,1.65) | -1.060 | 0.289 |
Outer layer VLD | 1.15(-0.53,1.40) | 0.20(-0.40,1.45) | -0.984 | 0.325 |
Whole VLD | 1.20(-0.28,1.60) | 0.20(-0.35,1.50) | -0.892 | 0.373 |
Central VPD | 0.05(0.00,0.08) | 0.01(-0.01,0.05) | -1.506 | 0.132 |
Inner layer VPD | 0.03(-0.02,0.06) | 0.02(-0.02,0.04) | -1.029 | 0.303 |
Outer layer VPD | 0.02(-0.01,0.04) | 0.00(-0.01,0.04) | -1.191 | 0.234 |
Whole VPD | 0.03(0.00,0.04) | 0.01(-0.01,0.04) | -1.030 | 0.303 |
FAZ-A | 0.02(-0.03,0.08) | 0.00(-0.03,0.06) | -0.878 | 0.380 |
FAZ-P | 0.06(-0.13,0.19) | -0.03(-0.20,0.17) | -0.845 | 0.398 |
FAZ-CI | 0.05(-0.04,0.14) | 0.04(-0.03,0.09) | -0.739 | 0.460 |
There was no difference in superficial retinal microcirculation in the macular after near work in young-adult with different diopters, P > 0.05.
由
Item | AL<25 mm | AL≥25 mm | Z | P |
---|---|---|---|---|
Central VLD | 1.90(-0.05,3.15) | 0.85(-1.30,1.95) | -1.694 | 0.090 |
Inner layer VLD | 1.30(-0.30,2.55) | 0.55(-1.18,1.55) | -1.592 | 0.111 |
Outer layer VLD | 1.10(-0.15,1.50) | -0.10(-0.65,0.90) | -1.970 | 0.049 |
Whole VLD | 1.10(-0.15,1.70) | 0.00(-0.40,0.98) | -1.883 | 0.060 |
Central VPD | 0.05(0.00,0.07) | 0.02(-0.03,0.05) | -1.665 | 0.096 |
Inner layer VPD | 0.02(0.00,0.06) | 0.01(-0.02,0.03) | -1.592 | 0.111 |
Outer layer VPD1) | 0.02(0.00,0.04) | 0.00(-0.01,0.01) | -2.294 | 0.022 |
Whole VPD1) | 0.03(0.00,0.05) | 0.00(-0.01,0.01) | -2.237 | 0.025 |
FAZ-A | 0.02(-0.03,0.05) | 0.00(-0.02,0.07) | -0.225 | 0.822 |
FAZ-P | 0.03(-0.18,0.16) | -0.02(-0.19,0.26) | -0.065 | 0.948 |
FAZ-CI | 0.05(-0.05,0.11) | 0.04(-0.03,0.08) | -0.406 | 0.685 |
1)There was no difference in superficial retinal microcirculation in the macular after near work in young-adult with different axial lengths, P > 0.05.
近视是指在调节放松状态下,平行光线经眼的屈光系统后聚焦在视网膜之前的一种屈光异常状态,临床上主要表现为远视力下降,近视力正常,通过佩戴负球镜或/和负柱镜可以提高视力。近视分为单纯性近视及病理性近视,而对于大部分青少年及轻中度近视来讲,多为单纯性近视,其主要的影响因素为遗传因素和环境因素,如生活环境的异常刺激、长时间、近距离的阅读等[
视网膜微血管系统的完整与否,是决定视功能得以维持的重要因素,而视网膜血管密度是衡量视网膜微血管循环状态的指标[
通过本研究的观察,在未进行眼轴校正的情况下,近距离用眼后的黄斑区浅层视网膜微循环指标普遍较用眼前存在不同程度的降低,而不同屈光度及眼轴两组间,变化程度无明显差异,且本研究的观察时间统一在下午,故可以排除昼夜节律的影响,证明近距离用眼会导致黄斑区浅层视网膜的缺血缺氧;在这些变化中,以中心区的微循环指标变化最为明显,可见近距离用眼对中心区的微循环影响最大,我们认为与黄斑中心凹主宰明视觉有关,在近距离用眼中,黄斑中心凹的功能最为活跃,也最容易被影响。至于差异虽具有统计学意义,但均不是很大,我们认为有以下两点:①近距离用眼的时间和强度不够,本研究设定的用眼时间为1 h,而在实际中,近距离用眼时间往往超过了1 h,且本研究中设定的近距离用眼距离为30 cm,而实际中多数人,尤其是儿童青少年的近距离用眼距离往往小于30 cm,其使用的强度远大于观察设定的用眼强度,如果能够增长时间、增加强度的话,可能会出现整个黄斑区浅层视网膜微循环的失代偿,出现明显的微循环的障碍,后期研究可考虑增加用眼的时间和缩短用眼的距离;② 我们的观察对象为成年人,视网膜血管系统已经发育成熟,对近距离用眼的刺激反应不够敏感,后期可以考虑对儿童青少年进行观察。结合本研究及既往研究结果,我们大胆的做出这样的猜测,近距离用眼之所以能够影响近视,是由于其时间和强度达到一定程度,导致黄斑区浅层视网膜微循环的失代偿,引起黄斑区甚至是整个视网膜浅层视网膜微循环的降低,导致局部的缺血缺氧,这种异常的信号通过深层视网膜传导至脉络膜层,进一步影响了脉络膜的血液灌注,从而导致巩膜组织缺血缺氧,最终影响了巩膜组织重塑,引起眼轴延长,致使近视的发生与发展,这与瞿佳教授团队的认识具有相似性[
本研究尚有不足之处:①纳入的人群的有限,后期可以考虑纳入未成年人,使得研究的结论更加有说服力;②本研究仅观察视网膜微循环的影响,未能观察脉络膜厚度的变化,分析脉络膜微循环的变化,后期可以进一步观察,使得研究结果更加全面;③因样本量有限,且不是随机样本,没有进行男女样本的单独统计分析,后期可以考虑加入更多的男性病例,同时尽量选择随机样本进行观察统计;④研究样本仅来自广州市区,得出的结论无法代表所有的地区,后期可以进行多中心的研究。
综上所述,近距离用眼可以导致青年近视患者黄斑区浅层视网膜微循环的降低,而以中心区最为显著,这可能与近距离用眼导致近视的发生与发展有关。近距离用眼可能通过影响黄斑区浅层视网膜微循环的改变,导致局部缺血缺氧,影响近视的发生及发展。
Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. [Baidu Scholar]
French AN, Morgan IG, Burlutsky G, et al. Prevalence and 5- to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildre[J]. Ophthalmology, 2013, 120(7): 1482-1491. [Baidu Scholar]
Naidoo KS, Fricke TR, Frick KD, et al. Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling[J]. Ophthalmology, 2019, 126(3): 338-346. [Baidu Scholar]
Li M, Yang Y, Jiang H, et al. Retinal microvascular network and microcirculation assessments in high myopia[J]. Am J Ophthalmol, 2017, 174:56-67. [Baidu Scholar]
Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R, et al. Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2063-2069. [Baidu Scholar]
王丹阳, 谭倩, 秦嘉敏, 等.学龄儿童眼球后极部脉络膜厚度及相关因素分析[J]. 中山大学学报(医学科学版), 2020, 41(1): 103-111. [Baidu Scholar]
Wang DY, Tan Q, Qin JM, et al. Observation on choroidal thickness of school-aged children and relevant factors[J]. J Sun Yat-sen Univ (Med.Sci), 2020,41(1): 103-111. [Baidu Scholar]
Shail G, Lisa AO. A systematic review of near work and myopia: measurement, relationships, mechanisms and clinical corollaries[J]. Acta Ophthalmol, 2022, 100(4): 376-387. [Baidu Scholar]
McCrann S, Loughman J, Butler JS, et al. Smartphone use as a possible risk factor for myopia[J]. Clin Exp Optom, 2021, 104(1): 35-41. [Baidu Scholar]
Morgan IG, French AN, Ashby RS, et al.The epidemics of myopia: aetiology and prevention l[J]. Prog Retin Eye Res, 2018, 62: 134-149. [Baidu Scholar]
Hansen MH, Laigaard PP, Olsen EM, et al. Low physical activity and higher use of screen devices are associated with myopia at the age of 16-17 years in the CCC2000 eye study[J]. Acta Ophthalmol, 2020, 98(3): 315-321. [Baidu Scholar]
Enthoven CA, Tideman JWL, Polling JR, et al. The impact of computer use on myopia development in childhood: the generation R study[J]. Prev Med. 2020, 132: 105988. [Baidu Scholar]
Yao L, Qi LS, Wang XF, et al. Refractive change and incidence of myopia among a group of highly selected senior high school students in China: a prospective study in an aviation cadet prerecruitment class[J]. Invest Ophthalmol Vis Sci, 2019, 60(5): 1344-1352. [Baidu Scholar]
Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci USA, 2018, 115(30): E7091-E7100. [Baidu Scholar]
Zhang S, Zhang G, Zhou X, et al. Changes in choroidal thickness and choroidal blood perfusion in guinea pig myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074-3083. [Baidu Scholar]
Zhou X, Zhang S, Zhang G, et al. Increased choroidal blood perfusion can inhibit form deprivation myopia in guinea pigs[J]. Invest Ophthalmol Vis Sci, 2020, 61(13): 25. [Baidu Scholar]
Yang Y, Wang JH, Jiang H, et al. Retinal microvasculature alteration in high myopia[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6020-6030. [Baidu Scholar]
Zhao F, Zhang D, Zhou Q, et al. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis[J]. EBioMedicine, 2020, 57: 102878. [Baidu Scholar]
范圆媛, 谢平, 胡仔仲. OCT测量黄斑区神经节细胞复合体厚度在高度近视眼中的应用进展[J]. 眼科学报, 2023, 38(3): 274-286. [Baidu Scholar]
Fan YY, Xie P, Hu ZZ. Application progress of OCT measurement for ganglion cell complex thickness in high myopic eyes[J]. Eye Sci, 2023, 38(3): 274-286. [Baidu Scholar]
Summers JA. The choroid as a sclera growth regulator[J]. Exp Eye Res, 2013, 114: 120-127. [Baidu Scholar]
Xiang XQ, Luo LY, Tang M, et al. Application of optical coherence tomography angiography in children with anisometropic amblyopia[J]. J Shanghai Jiaotong Univ (Med Sci), 2019, 39(1): 79-83. [Baidu Scholar]
Li KJ, Yu XB, Dai H. The alterations of microvascular structure in branch retinal vein occlusion eyes before and after anti-vascular endothelial growth factor drug therapy[J]. Chin J Ocul Fundus Dis, 2019, 35(1): 25-30. [Baidu Scholar]
Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases[J]. Surv Ophthalmol, 2017, 62(6): 838-866. [Baidu Scholar]
Richter GM, Chang R, Situ B, et al. Diagnostic performance of macular versus peripapillary vessel parameters by optical coherence tomography angiography for glaucoma[J]. Transl Vis Sci Technol, 2018, 7(6): 21. [Baidu Scholar]
田春柳, 赵军, 张娟美, 等. 基于OCTA的高度近视患眼黄斑区视网膜血管密度分析[J].眼科新进展, 2020, 40(3): 257-260. [Baidu Scholar]
Tian CL, Zhao J, Zhang JM, et al. Analysis of retinal vascular density in macular area of eyes with high myopia by OCTA [J]. Recent Adv Ophthalmol, 2020, 40(3): 257-260. [Baidu Scholar]
王丽雯, 崔林, 邹吉新, 等. OCTA在视网膜静脉阻塞诊疗中的应用价值[J].国际眼科杂志, 2019, 19(8): 1361-1364. [Baidu Scholar]
Wang LW, Cui L, Zou JX, et al. Application value of OCTA examination in diagnosis and treatment of retinal vein occlusion[J]. Int Eye Sci, 2019, 19(8): 1361-1364. [Baidu Scholar]
Shoji T, Ishii H, Kanno J, et al. Distance between the center of the FAZ measured automatically and the highest foveal bulge using OCT-angiography in elderly healthy eyes[J]. Sci Rep, 2021, 11(1): 21485. [Baidu Scholar]
曾俊, 刘陇黔. OCTA对青少年近视人群视网膜微血管密度的观察[J].中华眼视光学与视觉科学杂志, 2020, 22(5): 354-359. [Baidu Scholar]
Zeng J, Liu LQ. Retinal vessel density in adolescent myopia based on OCTA: an observational study[J]. Chin J Optom Ophthalmol Vis Sci, 2020, 22(5): 354-359. [Baidu Scholar]
邵伊润, 毛剑波, 沈丽君, 等. 高度近视继发脉络膜新生血管和单纯高度近视患眼以及正常眼黄斑区血流参数对比观察[J].中华眼底病杂志, 2019, 35(5): 446-450. [Baidu Scholar]
Shao YR, Mao JB, Shen LJ, et al. The comparison of macular blood flow parameters in myopic choroidal neovascularization, high myopia and normal people[J]. Chin J Ocular Fundus Dis, 2019, 35(5): 446-450. [Baidu Scholar]
瞿佳, 李瑾. 近视眼发生和发展机制研究的新进展[J].中华眼科杂志, 2021, 57(4): 311-314. [Baidu Scholar]
Qu J, Li J. New progress in the mechanism of myopia occurrence and development[J]. Chin J Ophthalmol, 2021, 57(4): 311-314. [Baidu Scholar]
0
Views
0
Downloads
0
CSCD
Related Articles
Related Author
Related Institution