Processing math: 100%
切换中文 维普资讯 中国知网 万方数据
Preclinic Research | Updated:2024-04-15
    • Effects of Lactobacillus Rhamnosus GG on Activated Microglia and Tau Phosphorylation in the Hippocampus of Aged Mice Induced by Anesthesia and Surgery

    • LIU Ling

      ,  

      LIU Funing

      ,  
    • Journal of Sun Yat-sen University(Medical Sciences)   Vol. 45, Issue 2, Pages: 226-232(2024)
    • DOI:10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240305.006    

      CLC: R614;R619
    • Published:20 March 2024

      Received:07 November 2023

      Accepted:21 February 2024

    Scan for full text

  • Cite this article

    PDF

  • LIU Ling,LIU Funing.Effects of Lactobacillus Rhamnosus GG on Activated Microglia and Tau Phosphorylation in the Hippocampus of Aged Mice Induced by Anesthesia and Surgery[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(02):226-232. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240305.006.

  •  
  •  
    Sections

    Abstract

    Objective

    To investigate the effects of Lactobacillus rhamnosus GG (LGG)on microglia and Tau phosphorylation in the hippocampus of aged mice induced by anesthesia and surgery.

    transl

    Methods

    A total of thirty 18-month-old C57BL/6J mice were randomly divided into three groups: control group, anesthesia surgery group, and anesthesia surgery + LGG group (10 mice/group). The aged mice were oral administered by NS or LGG 109 CFU 150 μL once a day for 20 days. Then anesthesia surgery group and anesthesia surgery +LGG group received anesthesia with isoflurane and exploratory laparotomy. The activation status of microglia in the hippocampus was detected by immunofluorescence staining 12 hours after surgery. IL-6 concentration changes was detected by ELISA. The expression changes of Tau protein phosphorylation site (Tau-pS202/pT205) and total Tau protein was detected by western blot.

    transl

    Results

    The microglia in the hippocampus of the control group were in a resting state, and the concentration of inflammatory factor IL-6 was (82.08 ± 12.07) pg/mL in control group. Compared to the control group, the anesthesia surgery group showed microglial cell Microglia were activated, the concentration of inflammatory factors IL-6 increased significantly to (123.7±5.72) pg/mL (P=0.000), and the expression of phosphorylated Tau-pS202/pT205 increased the hippocampus (P=0.002). Compared to the anesthesia surgery group, the activated microglia were inhibited, the concentration of IL-6 decreased to (96.68±9.59) pg/mL (P=0.008), and the expression of phosphorylated Tau-pS202/pT205 reduced significantly in the AS+LGG group (P=0.002). While there were no significant changes in total Tau protein among 3 groups.

    transl

    Conclusion

    Preoperative administration of probiotic LGG can alleviate the activation of microglia, increased secretion of inflammatory factors, and increased Tau protein phosphorylation levels in the hippocampus of elderly mice caused by anesthesia surgery.

    transl

    Keywords

    lactobacillus rhamnosus GG; aged mice; microglia; hippocampus; Tau protein phosphorylation

    transl

    术后谵妄(postoperative delirium, POD)是高龄患者最常见的术后神经系统并发症。但因其发生发展机制复杂,探索新的防治POD的方法仍然是目前迫切需要解决的临床课题。肠道菌群是人体肠道的正常微生物,参与营养、能量代谢、免疫、炎症、肿瘤等多种病理生理过程。越来越多的证据显示肠道菌群可通过肠脑轴参与阿尔兹海默症(Alzheimer’s disease, AD)、术后认知功能障碍(postoperative cognitive dysfunction, POCD)、POD等中枢神经退行性疾病的发生发展

    1-3。我们前期研究发现老年小鼠麻醉手术后肠道菌群即出现明显的相对丰度降低,菌群的组成比例也发生明显改变;而术前益生菌鼠李糖乳杆菌(Lactobacillus rhamnosus GG, LGG)灌胃可以改善麻醉手术导致的老年小鼠术后肠道菌群失调,改善术后谵妄样行为4。但其具体机制尚不完全清楚。小胶质细胞是中枢神经系统重要的免疫效应细胞,它可释放多种具有促炎、免疫调节等作用的因子,在神经退行性疾病的发病机理中起到十分重要的作用。小胶质细胞在生理状态下处于静息状态。在麻醉手术的刺激下,小胶质细胞可迅速被。过度活增殖活化,活化的小胶质细胞释放IL-6、TNF-α等炎症因子,损伤脑组织,参与POD、POCD的发生发展5-7。Tau 蛋白是神经元内含量最丰富的微管相关蛋白,参与神经元微管聚集和正常生物学信号传导,在学习记忆过程中发挥了重要作用。在神经退行性疾病或麻醉手术后,Tau蛋白异常磷酸化,特别是过度磷酸化会使这些Tau蛋白形成神经纤维缠结聚集,这些聚集物会影响神经元的功能,最终导致生物体的认知能力下降8。本文通过观察益生菌LGG,对麻醉手术老年小鼠小胶质细胞激活和Tau蛋白磷酸化的影响,旨在为防治老年患者术后谵妄提供新的思路。
    transl

    1 材料与方法

    1.1 动 物

    SPF 级2月龄C57BL/6小鼠,购自中山大学实验动物中心,许可证号为 SCXK(粤)2021-0029。饲养于中山大学东校区SPF级动物实验室,5只/笼。室内温度 20 ℃~24 ℃,相对湿度35%~45%,室内光线12 h明暗交替,经饲养培育至18月龄。所有对动物处置的实验过程符合中山大学实验室动物伦理学要求(伦理编号:AP20220219)。所有小鼠没有意外死亡或按照动物伦理委员会的要求实施安乐死的情况。

    transl

    1.2 药物及试剂

    益生菌LGG(Mommy’s Bliss Pharmaceuticals, USA),AT-8抗体 (1: 500, MN1020, Invitrogen)用于检测Tau蛋白丝氨酸202 (Tau-pS202)和苏氨酸205(Tau-pT205)磷酸化。total-Tau 抗体 (1:1 000,ab254256, Abcam, Cambridge, MA), β-actin 抗体 (1: 5 000, Sigma, St. Louis, MO),IBa-1抗体(1:1 000,019-1917,FUJIFILM Wako,Japan),小鼠 IL-6 Immunoassay kit (M6000B, R&D Systems, Minneapolis, MN)。

    transl

    1.3 仪 器

    酶标仪(ELX800,Bio-Tek);pH计(InLab413,Mettler Toledo);电子天平(AB204-S,Mettler Toledo);荧光倒置显微镜(NIKON,Japan);Power/PAC BASIC电泳仪(Bio-rad,USA);低速离心机(TDL80-213,上海安亭科学仪器厂);超声波细胞粉碎仪(Sonycs,南京新辰生物科技公司)。

    transl

    1.4 方 法

    1.4.1 实验动物分组

    18月龄老年小鼠30只随机分为3组:对照组(生理盐水灌胃),麻醉手术组(麻醉手术+生理盐水灌胃)、麻醉手术+LGG组(麻醉手术+LGG灌胃),10只/组。对照组小鼠150 μL生理盐水灌胃,每日 1 次,连续 20 d。麻醉手术组小鼠接受相同剂量和时间的生理盐水灌胃,然后接受体积分数1.4%异氟醚2 h麻醉+剖腹探查手术。麻醉手术+LGG组小鼠 LGG 109 CFU 用 150 μL生理盐水重悬灌胃,每日 1 次,连续 20 d,然后接受体积分数1.4%异氟醚 2 h麻醉+剖腹探查手术。

    transl

    1.4.2 动物剖腹探查手术模型

    参照本课题组之前的方法建立手术模型

    4,具体如下: 老年小鼠放入1.4%异氟醚,体积分数100%氧浓度的自制麻醉箱中,5~10 min后小鼠达到一定麻醉深度,将小鼠置入与麻醉箱相连接的麻醉面罩内进行剖腹探查手术。固定小鼠四肢使其保持仰卧位,刀片备皮,碘伏消毒皮肤两遍,腹部正中切口切皮,沿腹白线打开腹膜,用镊子探查腹腔脏器,探查完成后用5-0可吸收缝线依次缝合腹膜和皮肤,术毕伤口涂抹利多乳膏止痛。手术过程约 15 min,手术完成后把小鼠放回继续麻醉至2 h。麻醉停止后约10 min小鼠自然苏醒。术后12 h行分子生物学检测。
    transl

    1.4.3 免疫荧光染色

    每组小鼠随机取4只麻醉、仰卧位固定,用剪刀剪开剑突下皮肤,然后打开胸腔,暴露心脏,将灌注针从心尖部位,插入升主动脉,剪开左心耳,依次快速灌注生理盐水 100 mL、40 g/L多聚甲醛100 mL,取出脑组织,多聚甲醛后固定24 h,质量分数10%~30%蔗糖的磷酸缓冲液中梯度脱水。把脑组织放在冰冻切片机上,速冻后切片,厚度调整为15 μm,逐片收集,将脑片平铺贴在载玻片上。0.3%过氧化氢处理 10 min,体积分数0.3%Triton X-100破膜,质量分数2%BSA室温封闭 lh, IBa-1 一抗(0.5 μg/mL)4 ℃摇床孵育过夜,PBS 洗 3 次,每次5 min。荧光二抗(1:2 000)避光室温孵育 2 h,PBS洗 3 次,每次5 min。Hoechst33342染液染细胞核,37 °C孵育 10 min,PBS洗 3 次。加入抗荧光衰减封片剂后封片,荧光显微镜下观察采集图像。

    transl

    1.4.4 新鲜海马组织提取蛋白

    每组剩余的6只小鼠麻醉后断头处死,取出双侧大脑组织,用预冷PBS液冲洗,用镊子在预冷的冰盘上快速分离海马组织后将其放入EP管中,加入含有蛋白酶抑制剂的细胞裂解液,用超声将海马组织匀浆。离心 20 min,2 000~3 000 r/min(r = 5 cm)。仔细收集上清,- 80 ℃冰箱保存用于后续ELISA和western blot检测。

    transl

    1.4.5 ELISA检测海马炎症因子IL-6浓度

    提取好的海马蛋白BCA法进行蛋白定量。彻底混匀将要使用的试剂,设立空白孔和标准品对照孔,在样品孔中依次加入 100 μL 标准品和样品,每孔加入50 μL稀释好的生物素标记的检测因子的抗体,封闭,向每孔加入100 μL稀释好的链霉亲和素标记的HRP,再封闭,37 ℃孵育0.5~1 h,洗涤3次,加入底物溶液显色,在不透光的铝盒中孵育,每孔加入100 μL 终止液终止反应,30 min内在酶标仪上以 450 nm 测OD值,根据标准曲线计算浓度。

    transl

    1.4.6 蛋白印记法检测海马区Tau-pS202/pT205、Total-Tau蛋白表达变化

    提取好的海马蛋白BCA法进行蛋白定量。取蛋白 30 g 与上样缓冲液混匀98 °C 加热5 min 变性,离心后上样,80~100 V电泳分离。然后100 V、90 min电转移至硝酸纤维素膜,含5 g/L脱脂奶粉的TBST室温封闭1 h,加入一抗孵育 4 °C 过夜用,1∶5 000 二抗室温孵育45 min,ECL显影液显影后于凝胶成像系统采集图像。用 Image J 软件分析蛋白条带灰度值,以Tau-pS202/pT205/β-actin 、total Tau/β-actin灰度值比值进行统计分析。

    transl

    1.5 统计学方法

    采用SPSS 26.0软件进行统计分析。符合正态分布的计量资料以均数±标准差(ˉX ± S)表示,不符合正态分布的计量资料以中位数(四分位数间距)表示。行方差齐性检验后,采用单因素方差分析进行组间比较。进一步两两比较用LSD法。 P<0.05为差异有统计学意义。

    2 结 果

    2.1 LGG抑制了麻醉手术导致的老年小鼠海马区小胶质细胞激活

    免疫荧光染色结果显示,对照组海马区小胶质细胞胞体较小,突起细长。麻醉手术组小胶质细胞活化增殖,胞体变大,突起粗短。麻醉手术+LGG组较麻醉手术组活化增殖,胞体稍增大,部分突起仍细长(图1)。

    transl

    fig

    图1  LGG对麻醉手术老年小鼠海马区小胶质活化的影响

    Fig. 1  Effects of LGG on activation of microglia in the hippocampus of elderly mice undergoing anesthesia and surgery

    A-C: control group; D-F: anesthesia surgery group; G-I: anesthesia surgery + LGG group. A, D, G: Bar=100 μm; B, C, E, F,H, I:Bar=50 μm. The red fluorescence represents the IBA-1 labeled microglia, the blue fluorescence represents the H33258 labeled nucleus, and the white arrow indicates the cell body of the microglia.

    icon Download:  Full-size image | High-res image | Low-res image

    2.2 LGG抑制了麻醉手术导致的海马区炎症因子IL-6分泌增加

    使用ELISA检测3组海马区脑组织IL-6浓度,结果显示对照组为82.08±12.07 pg/mL,麻醉手术组为123.7±5.72 pg/mL,麻醉手术+LGG组为96.68±9.59 pg/mL。单因素方差分析,3组之间IL-6浓度变化差异有统计学意义(F=19.81,P=0.001;图2)。麻醉手术组IL-6浓度均值比对照组升高41.63(P=0.000),95%置信区间为(-60.36,-22.89)。而麻醉手术+LGG组IL-6浓度均值比麻醉手术组下降27.03(P=0.008),95%置信区间为(8.290,45.76)。

    transl

    fig

    图2  LGG对麻醉手术老年小鼠海马区炎症因子IL-6浓度的影响

    Fig. 2  Effects of LGG on the concentration of inflammatory factor IL-6 in the hippocampus of elderly mice undergoing anesthesia surgery

    *: P=0.000, **: P=0.008.

    icon Download:  Full-size image | High-res image | Low-res image

    2.3 LGG抑制了麻醉手术导致的海马区Tau-pS202/pT205蛋白表达增加

    Western blotting结果显示,3组海马区Tau-pS202/pT205表达水平差异有统计学差异(F=13.46,P=0.001)。麻醉手术组Tau-pS202/pT205相对表达量均值较对照组升高0.191(P=0.002),95%置信区间为(-0.304,-0.078 1)。麻醉手术+LGG组均值比麻醉手术组下降0.188(P=0.002),95%置信区间为(0.076 15,0.301 6)。而3组total Tau蛋白相对表达量差异无统计学意义(F=0.147,P=0.866;图3)。

    transl

    fig

    图3  LGG对麻醉手术老年小鼠海马区 Tau-pS202/pT205和total Tau蛋白表达的影响

    Fig. 3  Effects of LGG on Tau-pS202/pT205 and total Tau protein expression in the hippocampus of elderly mice undergoing anesthesia surgery

    A: Tau-pS202/pT205 and total Tau protein expression; B: Tau-pS202/pT205, *: P=0.002, **: P=0.002; C: total Tau, all P>0.05.

    icon Download:  Full-size image | High-res image | Low-res image

    3 讨 论

    POD的发生发展机制非常复杂,涉及年龄、手术、合并的基础疾病等。POD通常发生在接受心脏、骨外科、剖腹探查等大手术后,高龄是其独立危险因素。虽然近年来医疗水平有了较大提高,但是POD的发生率仍居高不下,因此其临床防治的策略仍然是目前研究的热点。

    transl

    受不同的刺激反应调控,小胶质细胞激活后迅速增殖并向两个方向分化:促炎的M1表型或抑炎的M2表型。与成年小鼠相比,老年小鼠的小胶质细胞胞体较大,突起粗短,且M1小胶质细胞和M2小胶质细胞均比成年小鼠增加。手术后以M1小胶质细胞增加为主

    9。与这些研究结果一致,本研究发现老年小鼠在麻醉手术后12 h海马区小胶质细胞迅速激活,炎症因子IL-6浓度增加。颅内炎症因子含量升高时,Tau蛋白Ser202/Thr205过度磷酸化。
    transl

    Tau蛋白有很多的磷酸化位点,目前认为Tau蛋白 Ser202、Thr205、Thr212、Ser214、Thr217 和 Ser396/404等多个位点过度磷酸化均参与认知功能障碍

    10-11。其中Ser202、Thr205 能被GSK3β、CDK5、MAPK、ERK等多种激酶激活过度磷酸化,并且与POD、POCD等围术期神经认知功能障碍关系密切412。最新的研究还发现在AD模型中tau蛋白磷酸化在不同位点间是“相互依赖”的,即一个位点的初始磷酸化会调节另一个位点的磷酸化状态。Thr205 tau磷酸化是相互依赖性调节的主要位点之一13。此外,与年轻大鼠相比,老年大鼠Tau Ser202/Thr205 磷酸化水平增加,受到内分泌激素变化影响时更易过度磷酸化14。因此本研究选择Ser202/Thr205作为检测位点,发现老年小鼠麻醉手术后海马区Tau蛋白Ser202/Thr205过度磷酸化。过度磷酸化的tau蛋白异常聚集,与微管蛋白结合能力减弱,维持微管稳定性功能受损,从而影响神经元正常功能,最终导致术后认知功能障碍。
    transl

    LGG 是最著名的鼠李糖乳杆菌,属于乳杆菌属、鼠李糖乳杆菌种。LGG 具有耐酸、耐胆汁盐、耐多种抗生素等生物学特点。LGG在耐胃酸和胆汁方面的性能非常突出,可以活体进入人体肠道。LGG 可以定殖在人体内长达两周之久,起到调节肠道菌群、预防和治疗腹泻、和提高机体免疫力等作用

    15。本研究发现术前使用LGG抑制了麻醉手术导致的海马区小胶质细胞激活,炎症因子IL-6分泌减少,Tau蛋白磷酸化水平下降。既往研究在青年大鼠骨折模型中发现LGG纠正了股骨干骨折和手术导致的肠道菌群失调,降低了变形杆菌的相对丰度并增加了厚壁菌门、放线菌门和拟杆菌门的相对丰度,并缓解骨折引发的血清炎症细胞因子上调16。此外,口服益生菌还能改善铝诱发的小鼠海马区小胶质细胞激活,降低炎症因子IL-1β、TNF-α水平17。目前认为肠道菌群主要通过其代谢产物短链脂肪酸(SCFAs)参与营养、免疫、抗炎、抗肿瘤等生理作用。SCFAs主要由结肠内厌氧菌酵解可溶性膳食纤维产生,包括乙酸、丙酸、丁酸。这些小分子通过肠道进入血液循环,穿过血脑屏障影响中枢神经系统的功能18。最新研究证实改变肠道代谢产物含量可加重或减轻小鼠POD样行为学19。增加肠道菌群代谢产物丁酸盐,可抑制AD小鼠小胶质细胞激活,降低Aβ蛋白含量,改善认知功能20。在与AD小鼠混合饲养后的wild-type小鼠(ADWT小鼠)中也发现,其脑组织中SCFAs尤其是丁酸含量明显降低,IL-6水平升高,学习记忆能力下降。而ADWT小鼠使用益生菌灌胃,提高脑组织丁酸含量,IL-6水平降低,Tau磷酸化水平降低,逆转了学习记忆能力下降21。鼠李糖杆菌通过降低拟杆菌和脱硫弧菌的丰度、增加乳酸杆菌和双歧杆菌的丰度,提高粪便SCFAs的水平,减轻高脂和高果糖饮食引起的肥胖和炎症反应22。以上证据提示LGG可能是通过SCFAs,尤其是丁酸,抑制小胶质细胞、减轻神经炎症、减少Tau蛋白磷酸化水平。
    transl

    总之,本研究发现老年小鼠术前服用益生菌鼠李糖乳杆菌可减轻麻醉手术导致的海马区小胶质细胞激活、炎症因子分泌增加、以及Tau蛋白磷酸化水平增加。这是益生菌改善老年小鼠POD行为的重要机制之一。

    transl

    参考文献

    1

    Wang XSun GFeng Tet al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression[J]. Cell Res20192910): 787-803. [Baidu Scholar] 

    2

    Zhan GHua DHuang Net al. Anesthesia and surgery induce cognitive dysfunction in elderly male mice: the role of gut microbiota[J]. Aging (Albany NY)2019116): 1778-1790. [Baidu Scholar] 

    3

    Zhang YBaldyga KDong Yet al. The association between gut microbiota and postoperative delirium in patients[J]. Transl Psychiatry2023131): 156. [Baidu Scholar] 

    4

    Liufu NLiu LShen Set al. Anesthesia and surgery induce age-dependent changes in behaviors and microbiota[J]. Aging (Albany NY)2020121965-1986. [Baidu Scholar] 

    5

    Zhao HWang QCheng Xet al. Inhibitive effect of resveratrol on the inflammation in cultured astrocytes and microglia induced by Aβ1-42[J]. Neuroscience2018379390. [Baidu Scholar] 

    6

    Mu JLLiu XDDong YHet al. Peripheral interleukin-6-associated microglial QUIN elevation in basolateral amygdala contributed to cognitive dysfunction in a mouse model of postoperative delirium[J]. Front Med (Lausanne)20229998397. [Baidu Scholar] 

    7

    高昕杜冰滢陈晶晶. 神经胶质细胞在血管性认知障碍发病机制中的研究进展[J]. 重庆医科大学学报2022477): 753-757. [Baidu Scholar] 

    Gao XDu BYChen JJet al. Research progress of glial cells in the pathogenesis of vascular cognitive impairment[J]. J Chongqing Med Univ2022477): 753-757. [Baidu Scholar] 

    8

    Yu LWen GZhu Set al. Abnormal phosphorylation of tau protein and neuroinflammation induced by laparotomy in an animal model of postoperative delirium[J]. Exp Brain Res20212393): 867-880. [Baidu Scholar] 

    9

    Zhang ZJZheng XXZhang XYet al. Aging alters Hv1-mediated microglial polarization and enhances neuroinflammation after peripheral surgery[J]. CNS Neurosci Ther2020263): 374-384. [Baidu Scholar] 

    10

    Zhang HWei WZhao Met al. Interaction between Aβ and tau in the pathogenesis of Alzheimer's disease[J]. Int J Biol Sci2021179): 2181-2192. [Baidu Scholar] 

    11

    Le Freche HBrouillette JFernandez-Gomez FJet al. Tau phosphorylation and sevoflurane anesthesia: an association to postoperative cognitive impairment[J]. Anesthesiology20121164): 779-787. [Baidu Scholar] 

    12

    Sun MDong YLi Met al. Dexmedetomidine and clonidine attenuate sevoflurane-induced tau phosphorylation and cognitive impairment in young mice via α-2 adrenergic receptor[J]. Anesth Analg20211323): 878-889. [Baidu Scholar] 

    13

    Stefanoska KGajwani MTan ARPet al. Alzheimer’s disease: ablating single master site abolishes tau hyperphosphorylation[J]. Sci Adv2022827): eabl8809. [Baidu Scholar] 

    14

    Tan BBabur EToy Net al. Tau protein is differentially phosphorylated in young- and old-aged rats with experimentally induced hyperthyroidism [J]. Int J Dev Neurosci2022827): 654-663. [Baidu Scholar] 

    15

    Rianda DAgustina RSetiawanEAet al. Effect of probiotic supplementation on cognitive function in children and adolescents: a systematic review of randomised trials[J]. Benef Microbes2019108): 873-882. [Baidu Scholar] 

    16

    Chen JFZhuang YJin SBet al. Probiotic Lactobacillus rhamnosus GG (LGG) restores intestinal dysbacteriosis to alleviate upregulated inflammatory cytokines triggered by femoral diaphyseal fracture in adolescent rodent model[J]. Eur Rev Med Pharmacol Sci2021251): 376-389. [Baidu Scholar] 

    17

    袁丽芳杨俊华邢志伟. 口服益生菌改善铝诱发的小鼠海马炎症[J]. 中山大学学报(医学科学版)2020412): 210-216. [Baidu Scholar] 

    Yuan LFYang JHXing ZWet al. Oral probiotics improves aluminum-induced hippocampal inflammation in mice[J]. J Sun Yat-sen Univ (Med Sci)2020412): 210-216. [Baidu Scholar] 

    18

    Sadler RCramer JVHeindl Set al. Short-chain fatty acids improve poststroke recovery via immunological mechanisms[J]. J Neurosci2020405): 1162-1173. [Baidu Scholar] 

    19

    Zhou XWu XWu Yet al. Indole-3-propionic acid, a gut microbiota metabolite, protects against the development of postoperative delirium[J]. Ann Surg20232786):e1164-e1174. [Baidu Scholar] 

    20

    Sun JXu JYang BChen Ket al. Effect of Clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer's disease via regulating gut microbiota and metabolites butyrate[J]. Mol Nutr Food Res2020642): e1900636. [Baidu Scholar] 

    21

    Zhang YYShen YLiu FNet al. Transmission of Alzheimer’s disease-associated microbiota dysbiosis and its impact on cognitive function: evidence from mice and patients[J]. Mol Psychiatry20232810): 4421-4437. [Baidu Scholar] 

    22

    Wang TYan HLu Yet al. Anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on high-fat and high-fructose diet mice base on inflammatory response alleviation and gut microbiota regulation[J]. Eur J Nutr2019596): 2709-2728. [Baidu Scholar] 

    140

    Views

    216

    Downloads

    0

    CSCD

    Alert me when the article has been cited
    Submit
    Tools
    Download
    Export Citation
    Share
    Add to favorites
    Add to my album

    Related Articles

    High-Fat Diet Impairs Neural Function of APPswe /PS1ΔE9 Mice by Enhancing Inflammatory Response and Pyroptosis
    Microglia Activated by α-Synuclein Inhibits Autophagy in SH-SY5Y Cells by Transporting miR-19a-3p Via Exosomes
    Involvement of Spinal CCL2 in Remifentanil-induced Hyperalgesia in Rats
    Immunomodulation and Expression of Cannabinoid 1 Receptor on Development of Experimental Autoimmune Encephalomyelitis in Mice

    Related Author

    SONG Zhen-yan
    LI Fu-zhou
    HE Chun-xiang
    YANG Miao
    YU Wen-jing
    CHENG Shao-wu
    LI Ze
    ZHOU Tian-en

    Related Institution

    Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine
    Department of Internal Medicine, South China Agricultural University Hospital
    Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
    Department of Emergency, The Affiliated Foshan Hospital of Sun Yat-sen University
    Department of Anatomy and Neurobiology,Zhongshan School of Medicine,Sun Yat-Sen University
    0