切换中文 维普资讯 中国知网 万方数据
Review | Updated:2024-07-30
    • Research Progress on Epidural Electrical Stimulation for Motor Disorders after Spinal Cord Injury

    • WU Xin

      1 ,  

      REN Binbin

      2 ,  
    • Journal of Sun Yat-sen University(Medical Sciences)   Vol. 45, Issue 4, Pages: 519-529(2024)
    • DOI:10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240617.010    

      CLC: R493
    • Published:20 July 2024

      Received:06 April 2024

      Accepted:30 May 2024

    Scan for full text

  • Cite this article

    PDF

  • WU Xin,REN Binbin.Research Progress on Epidural Electrical Stimulation for Motor Disorders after Spinal Cord Injury[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(04):519-529. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240617.010.

  •  
  •  
    Sections

    Abstract

    In recent years, the incidence of spinal cord injury (SCI) has shown an increasing trend, and the resulting motor impairment cause significant harm to patients themselves and public health. Although the current clinical treatments for motor disorders after SCI are diverse, mainly focusing on improving dysfunction and improving patients' daily living ability through external stimulation, there is still a lack of radical solutions. Epidural electrical stimulation (EES) as an emerging treatment technology, has been shown in a number of international clinical studies on the SCI significant potential of motor function recovery, has significant curative effect, convenient, widely applicable, adjustable advantages, the rehabilitation of movement disorders after SCI has a lot of big benefits, in the spinal cord injury rehabilitation has great prospect. However, most of the domestic research are limited to the neurogenic bladder caused by abnormal autonomic nerve function after SCI, and mostly combine traditional Chinese and western medicine rehabilitation treatment, the emerging therapy of EES, this paper aims to review the basic principle of EES, potential mechanism of action and its c linical application progress in the treatment of movement disorders after SCI, in order to provide reference for the clinical application and scientific research of EES treatment of motor disorders after SCI.

    transl

    Keywords

    spinal cord injury (SCI); epidural electrical stimulation (EES); motor impairment, rehabilitation; review

    transl

    脊髓损伤(spinal cord injury, SCI)是指由于创伤或非创伤性因素导致的脊髓功能及其结构的异常,进而影响损伤水平以下的脊髓功能(运动、感觉、大小便功能)等障碍

    1。一项基于人群的回顾性研究表明,在2011—2020年间每百万人中约有27人患SCI2,2013—2018年间我国的北京和天津创伤性SCI的发病率分别为60.6人/百万和23.7人/百万3,男性占比高于女性,且年龄多在34.7~54.4岁4,这无疑给患者及其家庭造成极大心理负担和经济压力。SCI是引起脊髓结构和功能的严重损害的高致残性病变,导致的症状包括四肢瘫或截瘫、感觉障碍、痉挛、异常运动模式、二便障碍、性功能障碍等5-6,甚至可造成终身感觉运动障碍,极大地损害了患者的身体、心理和社会参与能力。因此,亟待寻找最佳的康复治疗方法来解决这一问题与挑战。目前,临床治疗SCI的方法是多学科的,包括早期手术减压、血流动力学治疗、皮质类固醇神经保护疗法7等,但均未见显著的功效。值得注意的是,在SCI的多种动物模型中,硬膜外电刺激(epidural electrical stimulation, EES)已被证明可帮助运动功能恢复。此外,尽管只有少数临床病例研究支持这一结论,但这些研究均显示对SCI后运动功能障碍的康复的潜在疗效。然而由于相关研究病例较少,因此仍需进一步探讨EES对SCI后运动障碍康复的治疗潜力,并优化治疗参数,以更好服务于患者。
    transl

    1 硬膜外电刺激概述

    EES是一种电神经调控方法,已被证明可发现受损脊髓内的残余通路,用于研究外源性电刺激与脊髓感觉运动网络之间的相互作用。EES主要是通过在硬膜外放置电极,以特定模式刺激传入神经,以增加网络的兴奋性,以驱动自主和自主运动的控制反应,增强运动恢复的可塑性

    8。EES早期用于治疗神经性疼痛等疾病,随着EES技术的不断发展,逐步实现了EES下SCI患者多种运动功能的恢复,甚至在停止EES时,某些运动功能亦被保留了下来9。1967年,EES首次被美国食品和药品管理局(food and drug administration, FDA)使用并批准用于抑制顽固性疼痛。1976年,EES被引入以缓解多发性硬化症的痉挛。从那时起,EES已被证明可以改善SCI 患者的膝盖和脚踝的自主活动能力。1981年,应用直接脊髓刺激方法实现了脊髓诱发电位(spinal cord evoked potential, SCEP),从而消除了周围神经的影响,并收集了具有更好信噪比(signal-to-noise ratio, SNR)和更高振幅的诱发电位信号。此后,该项技术广泛应用于术中脊髓监测和其他临床治疗,如脊髓损伤后瘫痪10、阿片类药物呼吸抑制的对抗11、改善外周循环12等。
    transl

    2 硬膜外电刺激促进脊髓损伤后功能恢复的可能作用机制

    SCI可造成严重的中枢神经系统损害,历年来被全世界认为是无法治愈的损伤。EES作为目前最受关注的用于治疗SCI的治疗手段,通过重新激活残存的神经环路恢复SCI后肢体运动功能。目前大多数人认为,EES促进SCI患者运动功能的恢复主要与调节神经因子的表达与释放,促进神经再生和修复;提高神经元兴奋性,改善突触传导异常;调节炎症因子,减轻炎症反应;促进神经可塑性相关。

    transl

    2.1 促进神经再生和修复

    SCI后会导致受损部位及其周围脊髓组织的细胞死亡,特别是神经元作为神经系统的基本单位,是不可再生细胞,其损伤具有不可逆性,这也是SCI后康复的面临的关键所在。脊髓中央周围存在具有分化能力的细胞,在SCI后,可通过激活未损伤脊髓组织中的细胞,促进细胞分化和生长因子的分泌,代替受损神经元,促进神经系统功能的恢复

    13。在早期的研究中,已证明电刺激可促进相关再生基因和细胞骨架蛋白的表达,从而促进受损神经的再生和修复。Sayanagi等14通过对背根神经节基因表达的测定表明,电刺激可使背根神经节内再生相关基因表达增加,通过神经元再生轴突数量的增加和轴突再生速度加快实现神经再生与修复。Sreyashi等15对成年小鼠植入电极,通过对脊髓切片的免疫染色与成像和血流量的观察分析等表明了EES可通过改变脊髓神经元膜电位,促进脊髓干细胞和祖细胞的迁移、增殖和分化。Li等16研究发现EES可通过抑制SCI后BMP4-Smad1/5/9信号通路,减少少突胶质细胞和髓鞘丢失,增强脊髓白质突胶质细胞分化,保护髓鞘,促进运动功能的恢复。由此可见,EES作为一种在神经系统周围施加电流刺激的治疗方法,可调节神经生长因子的表达和释放,促进细胞的增殖和分化,进而加速受损神经的再生与修复。
    transl

    2.2 调节神经元兴奋性

    脊髓运动神经元是运动产生的最后单位,其兴奋性决定了神经元是否产生动作电位并是否将信号传递到肌肉或其他神经元。因此,脊髓运动神经元的兴奋性在运动控制和神经调节中起着重要作用。且已有相关研究表明,EES可增加大鼠脊髓背柱髓鞘传入纤维兴奋性并促进运动功能的恢复

    17-18。Zaghloul19通过对α、γ运动神经元和运动与反射活动的观察表明,EES可调节脊髓运动神经元的兴奋性,改善神经元突触活动,增强运动控制和学习能力。上述研究表明,EES可提高神经元的兴奋性,促进神经元之间的突触传递,增强神经元之间的连接和通信,从而改善受损神经的传导功能,提高神经元的协调性和运动功能。但目前关于EES通过调节神经元兴奋性改善SCI后运动障碍的相关临床研究较少,故仍需开展进一步深入研究,阐明相关作用机制,以期提供更多的临床支持。
    transl

    2.3 减轻炎症反应

    SCI后会引起炎症反应,导致神经细胞凋亡和神经功能丧失,这些炎症反应包括细胞因子的释放、血管通透性的增加、白细胞的浸润

    20等。这些炎症反应会导致局部组织的疼痛、肿胀和损伤的加重。同时,炎症反应还可引起细胞凋亡、神经元的损伤和瘢痕组织的形成,进而影响神经再生与修复。因此,控制炎症反应,是治疗SCI的重要方法21-22。研究表明,电刺激可通过多种作用机制改善炎症反应,促进损伤修复。Huo等23研究发现电刺激可降低巨噬细胞抑制因子(macrophage inhibition factor, MIF)互变异构酶活性,减少白介素-1β和基质金属蛋白酶-9水平,从而减少SCI的继发炎症反应。Wan等24发现EES可通过抑制Tlr4/NF-κB p65脊髓通路,减少脊髓背侧促炎细胞因子IL1β、IL6和TNFα从而减轻神经炎症,降低疼痛反应。上述研究表明,EES可以通过调节炎症因子的表达和释放,减轻炎症反应,保护神经细胞免受炎症损伤。因此,未来应深入研究EES与炎症反应之间的潜在关系,为SCI的治疗提供新方向。
    transl

    2.4 促进神经可塑性

    神经修复是治疗SCI的关键,而这种修复建立在神经可塑性的基础之上。神经可塑性可以通过轴突再生、突触重组和功能重建来实现神经系统的修复和恢复

    25。突触是神经元之间的连接点,参与神经元之间的信息传递和神经网络的形成,因此突触可塑性是神经修复的核心。Zhou等26结合EES和肌肉刺激的双重电刺激在10~20 Hz电流刺激下促使了运动神经元树突分支结构的再生,增加了SCI后中间神经元和运动神经元之间突触形成,重建了前运动神经元和运动神经元之间的功能突触的连接。Amer等27通过对大鼠运动皮层植入硬膜外电极和肌电图电极,在θ爆发刺激下,不仅增强了皮质脊髓运动的输出,改善了大鼠的运动功能,且促进了皮质脊髓束轴突生长和皮质脊髓束-脊髓中间神经元突触的结构变化。由此可见,EES可通过轴突可塑性实现神经可塑,增强神经元的功能恢复和适应能力,改善运动功能。目前关于EES与神经可塑性之间如何作用的相关研究较少,未来应进一步阐明EES与神经可塑性的作用机制,以期EES治疗SCI提供坚实可靠的支撑。
    transl

    3 硬膜外电刺激在脊髓损伤中的应用

    3.1 硬膜外电刺激治疗脊髓损伤上肢运动障碍

    SCI常会导致四肢瘫痪,根据脊髓损伤神经学分类国际标准

    28,运动平面位于C6-8的SCI患者上肢关键肌肌肉力量较弱,对上肢运动的伸肘、捏、抓握等产生重要的影响。而瘫痪后的自主运动是基于上肢运动的开链运动(如抓握)和闭链运动(如手推轮椅)来实现的29,因此上肢功能是SCI患者康复报告的重点所在。李军等30通过问卷调查形式了解到上肢功能的改善和恢复是绝大部分四肢瘫患者最渴望的。SCI后手功能的恢复对SCI患者在家庭环境中的日常生活活动尤为重要,是SCI患者实现自我保护和生活自理的重中之重31。因此,需要将上肢功能的恢复作为SCI患者康复的关键与核心。SCI上肢运动障碍的治疗方法包括康复训练、电刺激、重复经颅磁刺激32等,其中EES作为电刺激的重要形式,对治疗SCI上肢运动障碍具有显著疗效(如表1)。Williams等33通过对猫的运动皮层植入电极的方式,使用运动皮层诱发的肌电位测量EES对皮质脊髓功能的调节,表明了EES可促进皮质脊髓运动驱动到前肢特定的肌肉,以改善前肢的运动功能。Lu34等通过在受试者硬膜外植入电极和脊髓刺激器,在不同的刺激参数下采用双电极组合的方式通过对握力、准确性、上肢运动研究量表(action research arm test,ARAT)等评估证明了EES可通过刺激颈脊髓改善SCI患者手功能。这是EES对调节受伤颈脊髓的生理状态以提高慢性颈椎 SCI 人类受试者的意志手控制力和握力的首次证明。
    transl

    表1  纳入的硬膜外电刺激治疗脊髓损伤上肢运动障碍汇总
    Table 1  Summary of included epidural electrical stimulation for upper limb motor impairment in SCI
    ResearchScope of damageModeStimulate the positionStimulus parameterObservational indicatorsResult
    Williams, et al.33 Cervical spinal cord Surgical implantation Dorsal electrode C2-C6, ventrally located on the sternum Biphasic pulse (3-7 pulses; 0.2 ms; 333 Hz) MEP for the biceps and radial extensor carpi

    1. The cathodic EES significantly increased the MEP amplitude above baseline (from 1 mA to 4 mA); the biceps motor output increased significantly with increased stimulation.

    2. Cathodic EES increased the motor output of the radial wrist extensor muscle, and 35 mA EES increased its MEP by 4%.

    3. The 3.4 mA anode EES inhibited MEP of the biceps and radial wrist extensors; 5 mA anode EES decreased the biceps sensitivity by 22%; and the radial extensor muscles by 28%.

    Lu, et al.34 Cervical spinal cord Surgical implantation Epidural lead C1-T2, epidural electrode array C1-T1 Dual-electrode combination stimulation (0.1-10.0 mA; 2-40 Hz; 210 μs) Grip strength, repetition, accuracy, ARAT score, and ISNCSCI

    1. Maximum grip strength, extrusion release times, and accuracy were all improved during EES treatment.

    2. EES improves EMG activity in the upper limb muscles.

    3. EES increased the ARAT score by 20% and increased the ISNCSCI upper limb motor score from 9 to 32 and 17 to 33, respectively.

    MEP: motor evoked potentials; ARAT: action research arm test; ISNCSCI: international standards for neurological classification of spinal cord injury.

    icon Download:  CSV icon Download:  Table Images

    3.2 硬膜外电刺激治疗脊髓损伤下肢运动障碍

    脊髓是连接大脑和下肢的重要神经通路,而协调行走的运动神经元大多存在于腰椎脊髓的通路中,一旦脊髓损伤,神经传导受阻或脊髓内的神经元受损或死亡,导致下肢无法接收到大脑发送的运动指令,从而引起下肢瘫痪。对SCI患者生活能力影响最大的是步行能力,因此,SCI患者康复的主要目标是实现步态重建,恢复下肢行走

    35。SCI下肢运动障碍常用的治疗方法是外骨骼机器人辅助治疗,但也存在设备使用中存在许多安全问题,易使患者出现皮肤破损、压疮、骨折等风险。而EES作为一种新兴技术,只是通过经皮或手术的方式将电极植入在硬脑膜背侧,极大程度上避免了此类不良事件的发生率。早期的研究表明,在硬膜外放置瘫痪损伤下方的腰椎脊髓后侧的电极可刺激参与下肢运动的脊髓回路(表2)。Gorgey36等在慢性运动完全性SCI经皮植入EES的病案研究中,以脊柱映射调节阴极-阳极电极排列和刺激参数,在排除了其他因素的干扰下,实现了多种形式的运动。并在外骨骼辅助下完成了站立,且展示了不同程度的意识控制。Kathe37等通过手术植入神经刺激器和浆引线构成的仿生EES协议的闭环控制,通过对受试者进行每周4~5次,连续5个月的站立、行走和使用EES进行的各项练习,使得受试者的下肢运动评分显著增加,即使再没有EES,受试者也在机器人支持下改善或恢复了行走能力,在打开EES下可实现对受试者步幅的意识控制。步行能力的恢复,证明了EES可促进人体脊髓的重塑,对恢复SCI下肢运动有重要的作用。以上两项研究阐明了EES在SCI后下肢运动障碍中康复的良好疗效。
    transl

    表2  纳入的硬膜外电刺激治疗脊髓损伤下肢运动障碍汇总
    Table 2  Summary of included epidural electrical stimulation for the treatment of lower limb movement disorders in SCI
    ResearchScope of damageModeStimulate the positionStimulus parameterObservational indicatorsResult
    Gorgey, et al.36 0772 C8;0773 T11 Surgical implantation T8-L10 segment and then permanently implanted in 0772 T11-L1 vertebral position;0773 T12-L1 (left lead) L1-L2 (right lead) Double-electrode was combined with stimulation EGM of lower limb or trunk muscles, exoskeleton-assisted walking performance, above-ground walking, and peak isometric torque

    1.At 30 Hz, 250 μs, 5.2 mA, EES cannot or rarely induce tonic activity; at 5.4 mA, induce a single muscle burst.

    2. 0772 Under EES, it will move with different configurations but no voluntary movement; 0773 may bend in the lateral position under EES, inducing bilateral muscle activity under 20 Hz 400 μs 1.3 mA.

    3. Both can adjust the torque under EES, and TTI is larger than voluntary attempts without EES or TTI induced by EES.

    4. 0772 Stand under EES without self-upper limb balance assistance; 0773 Stand parallel with EES and upper limb self-balance assistance.

    5. With exoskeleton assisted walking, both have larger steps and faster pace.

    Kathe, et al.37 Lumbar spinal cord Surgical implantation T10-L2 The 10 m walking test, weight-bearing ability, and WISCIⅡ score

    1. Improve the load-bearing capacity.

    2. Walking can be achieved with EES and auxiliary equipment.

    3. When stopping EES, lower limb motor scores increased significantly and walking was possible.

    EMG: electromyography; TTI: time-torque integral; WISCI Ⅱ: walking index for spinal cord injury Ⅱ.

    icon Download:  CSV icon Download:  Table Images

    3.3 硬膜外刺激治疗脊髓损伤下自主神经障碍

    脊髓是连接大脑和身体其他部位的重要神经通道,SCI常引起自主神经功能障碍,以T6及以上水平SCI更为明显

    38,一旦受损,就会影响到神经信号的传递,造成自主意识受损或丧失,进而导致身体各部位的功能障碍,通常表现为患者无法自主控制排尿排便、体温调节等生理功能,甚至出现呼吸困难等严重后果39。目前对于SCI后自主神经功能障碍尚无确切的治愈方案,然而在前期大量的实验中已显示出了EES可改善SCI后肢体运动障碍的意志控制(表3)。Chandrasekaran等40通过在上肢截肢患者硬膜外植入电极的方式,唤起了在缺失肢体的不同区域(手指、手掌和前臂)的感觉知觉。Angeli41等在颈椎经皮与腰椎EES相结合改善SCI后自主控制的临床试验研究中,通过对颈椎椎经皮和腰椎EES来探索脑脊髓连接组及其对脊柱兴奋性和肢体间耦合的影响,对负重与非负重环境中有意踩踏期间的下肢肌肉活动和运动学进行评估,结果证明了在经皮颈椎和腰椎EES期间截瘫患者对踏步能力的自主控制有所改善。Darrow等42通过对受试者T5水平植入硬膜外电刺激系统,通过对意志肌活动等评估,表明了EES可恢复SCI患者意志运动和肌肉活动,且EES在倾斜台测试中不仅改善了心血管功能,并相应的改善脑血流量和认知能力。
    transl

    表3  纳入的硬膜外刺激治疗脊髓损伤下自主神经障碍汇总
    Table 3  Summary of epidural stimuli for the treatment of autonomic disorders under SCI
    ResearchScope of damageModeStimulate the positionStimulus parameterObservational indicatorsResult
    Chandrasekaran, et al.40 Upper limb amputation Surgical implantation The dorsal epidural space of the C5-C8 spinal cord Unipolar, multipolar electrodes were combined with stimulation (0-6 mA; 1-300 Hz; 50-1 000 µs) Sensory perceptual response The lateral EES evoked absent limb sensations and remained stable during the testing period.
    Angeli, et al.41 Motor-complete SCI Surgical implantation Percutaneous spinal cord stimulation C3 and C5; at the T11-L1 vertebral level above the EES lumbosacral spinal cord (L1-S1 spinal segment) Bidirectional pulse (1 ms; 5 kHz) The EMG of the lower limb muscles

    1. Action evoked potential inhibition by EES stimulation during cervical percutaneous spinal stimulation.

    2. Reduced variability of non-weight-bearing intentional step motor output and improved coordination under both stimuli.

    David, et al.42 C6-T10 Surgical implantation T5 level 16-400 Hz; 200-500 µs; 2-15 mA Assessment of volitional muscle activity, BP, hemodynamic assessment, cognitive function tests, neurogenic bowel dysfunction score

    1. Activation of EES produces voluntary movement, and certain muscle groups can be activated by command during acute stimulation.

    2. EES quickly applied stimulation according to the beak to restore blood pressure, and the symptoms of nausea and vomiting subsided.

    3. Lying flat and leaning stimulated the beak higher than untilted EES cognitive function.

    BP : ambulatory blood pressure; EMG: electromyography.

    icon Download:  CSV icon Download:  Table Images

    3.4 硬膜外刺激联合其他疗法治疗脊髓损伤

    SCI是一种复杂性的疾病,其核心病机为脊髓组织的损伤导致脊髓神经元或神经纤维的破坏,影响神经传导功能或脊髓损伤后的神经元凋亡、炎症反应、缺血再灌注损伤所致。因此,对SCI的治疗需要综合性的方案

    43表4)。Sinopoulou等44在皮质EES联合康复和软骨素酶ABC在SCI后大鼠前肢运动障碍的研究中,手术的方式在SCI大鼠植入硬膜外电极和EMG电极,通过对握力任务期间的动作诱发电位(motor evoked potentials, MEP)和最大自主收缩(maximum voluntary contraction, MVC)来评估肌肉活动,自主和诱发肌肉活动的纵向监测显示,与单一治疗或不治疗相比,联合治疗显著增加了肌肉活动和上肢灵活性。Inanici等45在经皮脊髓刺激恢复SCI后手和手臂的功能的一项临床研究中,通过对受试者进行强化功能任务训练和经皮脊髓电刺激,以力量、敏感性和理解能力为主要结局指标进行评价,结果表明与单独训练相比,刺激后的捏力、手臂和手的功能及灵活性表现明显更高,与基线水平相比,在刺激与训练相结合期间,捏力提高了 2.4~4.8倍。因此证明了经皮颈脊髓刺激与强化运动相结合恢复并提高了6名完全性和不完全性颈脊椎SCI患者的上肢功能。Pei等46在SCI患者EES后肌电图(EMG)诱导康复治疗的前瞻性随机对照试验中,将接受EES的SCI患者分为两组,对照组将接受常规康复治疗。肌电诱导康复组将接受基于常规康复治疗的上下肢靶肌电图诱导的康复治疗。通过使用 St. Jude Medical Eon Mini™ 神经刺激系统将16个接触网格将植入脊髓的背面,以上肢肌肉(肱二头肌、肱三头肌和趾伸肌)和下肢肌肉(如股四头肌、腓肠肌和腘绳肌)为目标肌肉,以肌电图诱导的康复训练对目标肌肉进行康复训练,监测肌肉力量恢复和生活质量的提高,以期为EES下SCI患者的康复方案提供依据。
    transl

    表4  纳入的硬膜外刺激联合其他疗法治疗脊髓损伤汇总
    Table 4  Summary of included epidural stimulation combined with other therapies for SCI
    ResearchScope of damageModeStimulate the positionStimulus parameterObservational indicatorsResult
    Eleni, et al.44 C7 Surgical implantation On the dura mater above the caudal forelimb region 2 s/5 pulses; 500 Hz; 2.2 ms bidirectional pulses MEP, MVC, EMG

    1. MVC under AUC showed a significant increase in muscle vitality by animals in the triple treatment combination group.

    2. MVC muscle recordings at the time point of acute to chronic injury showed an increase in voluntary muscle activity in animals receiving the triple treatment combination.

    3 .Chronic muscle recordings revealed increased evoked muscle activity in animals receiving the triple treatment combination.

    Fatma, et al.45 Cervical spinal cord Surgical implantation The cathode electrode was placed at the midline of the neck skin, one above the level of injury and one below the level of injury; the anode electrode was placed symmetrically on the anterior iliac crest of the pelvis Two-way or one-way pulse of 1 ms 30 Hz; 10 kHz The ading of strength, sensation, grasp redefines assessment, lateral pinch, spasticity

    1. Percutaneous spinal cord stimulation improved hand strength and grasping ability, increasing upper limb motor scores by 3 points and increasing pinch strength by 2.4-4.8 times from baseline.

    2. Percutaneous spinal cord stimulation improved muscle tone and improved the average participant spasticity by 5.3 points.

    3. Percutaneous spinal stimulation improved autonomic function, improved urination control in participants 2 and 3 and reduced residual urine volume.

    Pei, et al.46 SCI Surgical implantation The back of the spinal cord 20-60 Hz; 200-300 μs; 0.1-1.0 mA MMT

    MVC: maximum voluntary contraction; MMT: manual muscle testing; AUC: area under the concentration-time curve; EMG: electromyography.

    icon Download:  CSV icon Download:  Table Images

    总而言之,EES作为一种新型的神经调控策略,目前已有少量小规模临床实验证明,可用于治疗SCI后肢体运动障碍以恢复肢体运动,且疗效较为显著。但目前各项临床研究存在高度异质性,各个治疗方案选定的治疗部位、刺激参数、治疗疗效等方面存在较大差异,争议性较大。因此未来仍需要大量的前瞻性、多中心的临床试验研究,以为临床应用提供理论支持。

    transl

    4 小结与展望

    SCI是一种可导致严重的感觉、运动、自主神经功能障碍的神经系统状态

    47,具有高发病率、高致残率、治疗费高的特点48,对患者及社会健康造成了极大困扰。SCI的发病机制较为复杂,且其损伤多具有不可逆性,目前尚无明确治愈的方法。临床康复治疗的目的在于通过外在刺激改善功能障碍,提高患者日常生活能力。EES作为一种较新兴的治疗方法,已被证明可明显改善SCI后肢体运动功能和自主意识。且EES具有疗效显著、方便易行、适用广泛、可调节性强等优势,对SCI后运动障碍的康复有很多大助益,在脊髓损伤康复中有很大的发展前景。然而目前国内的大多数研究多局限于SCI后自主神经功能异常导致的神经源性膀胱等,且多为中西医结合康复治疗,对EES这一新兴疗法少有集中研究,因此,本研究通过梳理EES对SCI后肢体运动障碍的相关文献,以期为EES对SCI后运动障碍的治疗提供新的治疗方法和途径。此外,此项技术的研究尚存在一定的问题:①EES主要通过刺激传入神经,增加网络的兴奋性,以驱动自主和自主运动的控制反应。尽管目前已提出了多种作用机制,但其背后的神经可塑性变化机制尚不清楚,需要进一步深入研究。②目前关于EES技术的描述大多是动物实验,临床研究的样本量相对较少,缺乏相对可靠的安全性指标。③目前各项临床研究存在高度异质性,各个治疗方案选定的治疗部位、刺激参数、治疗时间、治疗疗效等方面存在较大差异,可参考性较低。④EES与其他干预方式相结合,还可用于改善卒中后肢体运动障碍、血栓闭塞性脉管炎等,但仍需要大规模的临床随机对照试验来确定其临床疗效。总的来说,国内外已开展EES在SCI治疗方面的研究,通过动物模型实验及小规模的临床实验证明,EES能有效提高SCI后运动障碍,但其作用机制尚未明确,未来仍需要大量的前瞻性、多中心的临床试验研究,以为临床应用提供理论支持,为SCI后运动障碍的患者寻找更具优势的治疗方案和康复方法,以降低对患者及其家庭的心理和经济负担,提高患者生活质量和社会参与感。
    transl

    参考文献

    1

    曹烈虎牛丰张文财. 创伤性脊柱脊髓损伤康复治疗专家共识(2020版)[J]. 中华创伤杂志2020365): 385-392. [Baidu Scholar] 

    Cao LHNiu FZhang WCet al. Consensus of Experts on Rehabilitation Treatment of Traumatic Spinal Cord Injury (2020 Edi)[J]. Chin J Traumatol2020365): 385-392. [Baidu Scholar] 

    2

    Claudio ABLaura SStefania Bet al. Epidemiology of traumatic spinal cord injury: a large population-based study[J]. Spinal cord2022609): 812-819. [Baidu Scholar] 

    3

    Shenghui SChaoyu WWei Wet al. Sex-related differences in epidemiology, treatment and economic burden of traumatic spinal cord injury in China (2013-2018)[J]. Spine20234817): E288-E301. [Baidu Scholar] 

    4

    陈星月陈栋陈春慧.中国创伤性脊髓损伤流行病学和疾病经济负担的系统评价[J]. 中国循证医学杂志2018182): 143-150. [Baidu Scholar] 

    Chen XYChen DChen CHet al. Systematic review of the epidemiology and disease economic burden of traumatic spinal cord injury in China[J]. Chin J Evid-based Med2018182): 143-150. [Baidu Scholar] 

    5

    陈华德农飞玉梁翠娟. 局部振动在脊髓损伤康复中的应用与研究进展[J]. 现代医药卫生2024405): 854-859. [Baidu Scholar] 

    Chen HDNong FYLiang CJet al. Application and research progress of local vibration in spinal cord injury rehabilitation[J]. Modern Med Health2024405): 854-859. [Baidu Scholar] 

    6

    王宁华顾新周谋望. 基于循证医学证据的脊髓损伤患者躯干控制障碍康复评定和康复治疗专家共识[J]. 中国康复医学杂志2024393): 305-311. [Baidu Scholar] 

    Wang NHGu XZhou MWet al. Expert consensus on the assessment and rehabilitation treatment of trunk control disorders in patients with spinal cord injury based on evidence-based medicine evidence[J]. Chin J Rehabil Med2024393): 305-311. [Baidu Scholar] 

    7

    Michael KGregory H. Modern medical management of spinal cord injury[J]. Curr Neurol Neurosci Rep2019199): 65. [Baidu Scholar] 

    8

    Eisdorfer JTSmit RDKeefe KMet al. Epidural electrical stimulation: a review of plasticity mechanisms that are hypothesized to underlie enhanced recovery from spinal cord injury with stimulation[J]. Front Mol Neurosci202013163. [Baidu Scholar] 

    9

    韩妍陆洋王劲. 硬膜外脊髓电刺激治疗脊髓损伤后运动障碍的研究进展[J]. 中华神经医学杂志20212010): 1070-1075. [Baidu Scholar] 

    Han YLu YWang Jet al. Progress in epidural spinal cord electrical stimulation for the treatment of motor disorders after SCI[J]. Chin J Neuromed20212010): 1070-1075. [Baidu Scholar] 

    10

    Hersh AMWeber-Levine CJiang Ket al. Spinal cord injury: emerging technologies[J]. Neurosurg Clin N Am2024352): 243-251. [Baidu Scholar] 

    11

    Huang RWorrell JGarner Eet al. Epidural electrical stimulation of the cervical spinal cord opposes opioid-induced respiratory depression[J]. Physiol202260012): 2973-2999. [Baidu Scholar] 

    12

    Augustinsson LECarlsson CAHolm Jet al. Epidural electrical stimulation in severe limb ischemia. Pain relief, increased blood flow, and a possible limb-saving effect[J]. Ann Surg19852021): 104-110. [Baidu Scholar] 

    13

    Marina GVladislav VRandall CHet al. Stem cells therapy for spinal cord injury[J]. Intern J Mol Sci2018194): 1039. [Baidu Scholar] 

    14

    Sayanagi JAcevedo-Cintrón JAPan Det al. Brief electrical stimulation accelerates axon regeneration and promotes recovery following nerve transection and repair in mice[J]. J Bone Joint Surg Am202110320): e80-e80. [Baidu Scholar] 

    15

    Sreyashi SKizzy VDipen Pet al. Transspinal direct current stimulation modulates migration and proliferation of adult newly born spinal cells in mice[J]. J Appl Physiol (1985), 20171222): 339-353. [Baidu Scholar] 

    16

    Li GFan ZKGu GFet al. Epidural spinal cord stimulation promotes motor functional recovery by enhancing oligodendrocyte survival and differentiation and by protecting myelin after spinal cord injury in rats[J]. Neurosci Bull2020364): 372-384. [Baidu Scholar] 

    17

    Li YHari KLucas-Osma AMet al. Branching points of primary afferent fibers are vital for the modulation of fiber excitability by epidural DC polarization and by GABA in the rat spinal cord[J]. J Neurophysiol20201241): 49-62. [Baidu Scholar] 

    18

    Elzbieta JDominik KFrancesco Bet al. Long-lasting increase in axonal excitability after epidurally applied DC[J]. J Neurophysiol20171182): 1210-1220. [Baidu Scholar] 

    19

    Zaghloul A. Modulation of gamma and alpha spinal motor neurons activity by trans-spinal direct current stimulation: effects on reflexive actions and locomotor activity[J]. Physiol Rep201643): e12696. [Baidu Scholar] 

    20

    Freyermuth-Trujillo XSegura-Uribe JJSalgado-Ceballos Het al. Inflammation: a target for treatment in spinal cord injury[J]. Cells20221117): 2692. [Baidu Scholar] 

    21

    Liu XZhang YWang Yet al. Inflammatory response to spinal cord injury and its treatment[J]. World Neurosurg202115519-31. [Baidu Scholar] 

    22

    郭栋常素娥贺西京. 间充质干细胞迁移治疗脊髓损伤的研究进展[J]. 重庆医科大学学报20224710): 1133-1138. [Baidu Scholar] 

    Guo DChang SHe XJet al. Advances in mesenchymal stem cell migration for treating spinal cord injury[J]. J Chongqing Med Univ20224710): 1133-1138. [Baidu Scholar] 

    23

    Huo XZhang GWu Cet al. Electric field stimulation protects injured spinal cord from secondary inflammatory response in rats[J]. Annu Int Conf IEEE Eng Med Biol Soc201720171958-1961. [Baidu Scholar] 

    24

    Wan NJianjun LQingbang Xet al. Spinal cord stimulation alleviates pain hypersensitivity by attenuating neuroinflammation in a model of painful diabetic neuropathy[J]. J Integrat Neurosci2023223): 67. [Baidu Scholar] 

    25

    田婷李晓光. 脊髓损伤再生修复中的问题与挑战[J]. 中国组织工程研究20212519): 3039-3048. [Baidu Scholar] 

    Tian TLi XG.The Challenges and issues in spinal cord injury regeneration and repair[J]. Tissue Engin Res Chin20212519): 3039-3048. [Baidu Scholar] 

    26

    Zhou KWei WYang Det al. Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury[J]. Nat Commun2024151): 619. [Baidu Scholar] 

    27

    Amer AMartin JH. Repeated motor cortex theta-burst stimulation produces persistent strengthening of corticospinal motor output and durable spinal cord structural changes in the rat[J]. Brain Stimul2022154): 1013-1022. [Baidu Scholar] 

    28

    Chalif IJChavarro SVMensah Eet al. Epidural spinal cord stimulation for spinal cord injury in humans: a systematic review[J]. J Clin Med2024134): 1090. [Baidu Scholar] 

    29

    王一吉周红俊李建军. 脊髓损伤神经学分类国际标准检查表最新修订及解读[J]. 中国康复理论与实践2015218): 879-882. [Baidu Scholar] 

    Wang YJZhou HJLi JJet al. Latest revision and interpretation of international standard examination form for neurological classification of spinal cord injury[J]. Chin Rehabil Theory Pract2015218): 879-882. [Baidu Scholar] 

    30

    李军王冲杜良杰. 颈段脊髓损伤患者上肢功能重建手术认知度的问卷调查[J]. 中国康复理论与实践2017232): 217-220. [Baidu Scholar] 

    Li JWang CDu LJet al.Questionnaire recognition of upper limb functional reconstruction in patients with cervical SCI[J]. Rehabil Theory Pract Chin2017232): 217-220. [Baidu Scholar] 

    31

    Mehdy DAndrea BParvin Eet al. Grasp analysis in the home environment as a measure of hand function after cervical spinal cord injury[J]. Neurorehabil Neural Repair2023377): 466-474. [Baidu Scholar] 

    32

    顾春雅程媛赵丽娟. rTMS刺激运动前区改善脊髓损伤后肌张力障碍1例报告[J]. 四川大学学报(医学版)2020515): 618-621. [Baidu Scholar] 

    Gu CYCheng YZhao LJet al. Improvement of dystonia after spinal cord injury by applying repetitive transcranial magnetic stimulation on the premotor cortex: case report[J]. J Sichuan Univ ( Med Sci )2020515): 618-621. [Baidu Scholar] 

    33

    Williams PTJATruong DQSeifert ACet al. Selective augmentation of corticospinal motor drive with trans-spinal direct current stimulation in the cat[J]. Brain Stimul2022153): 624-634. [Baidu Scholar] 

    34

    Lu DCEdgerton VRModaber Met al. Engaging cervical spinal cord networks to reenable volitional control of hand function in tetraplegic patients[J]. Neurorehabil Neural Repair20163010): 951-962. [Baidu Scholar] 

    35

    Koyama STanabe SSaitoh Eet al. Characterization of unexpected postural changes during robot-assisted gait training in paraplegic patients[J]. Spinal Cord2016542): 120-125. [Baidu Scholar] 

    36

    Gorgey ASTrainer RSutor TWet al. A case study of percutaneous epidural stimulation to enable motor control in two men after spinal cord injury[J]. Nat Commun2023141): 2064. [Baidu Scholar] 

    37

    Kathe CSkinnider MAHutson THet al. The neurons that restore walking after paralysis[J]. Nature20226117936): 540-547. [Baidu Scholar] 

    38

    张启富龙耀斌陈在娟. 前庭康复训练治疗脊髓损伤后心脏和血压自主神经异常调控[J]. 实用医学杂志20163223): 3905-3907. [Baidu Scholar] 

    Zhang QFLong YBChen ZJet al. Vestibular rehabilitation training for autonomic dysregulation of heart and blood pressure after spinal cord injury[J]. J Pract Med20163223): 3905-3907. [Baidu Scholar] 

    39

    周谋望刘楠. 加强康复医疗质量管理与控制,促进脊髓损伤康复全面发展[J]. 中国康复医学杂志20183310): 1135-1136. [Baidu Scholar] 

    Zhou MWLiu N.Strengthen the quality management and control of rehabilitation medicine to promote the comprehensive development of spinal cord injury rehabilitation[J]. Chin J Rehabil Med20183310): 1135-1136. [Baidu Scholar] 

    40

    Chandrasekaran SNanivadekar ACMcKernan Get al. Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees[J]. eLife20209e54349. [Baidu Scholar] 

    41

    Angeli CAGerasimenko Y. Combined cervical transcutaneous with lumbosacral epidural stimulation improves voluntary control of stepping movements in spinal cord injured individuals[J]. Front Bioeng Biotechnol2023111073716. [Baidu Scholar] 

    42

    Darrow DBalser DNetoff TIet al. Epidural spinal cord stimulation facilitates immediate restoration of dormant motor and autonomic supraspinal pathways after chronic neurologically complete spinal cord injury[J]. J Neurotrauma20193615): 2325-2336. [Baidu Scholar] 

    43

    Ahuja CSFehlings M. Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury[J]. Stem Cells Transl Med201657): 914-924. [Baidu Scholar] 

    44

    Sinopoulou ESpejo ABRoopnarine Net al. Chronic muscle recordings reveal recovery of forelimb function in spinal injured female rats after cortical epidural stimulation combined with rehabilitation and chondroitinase ABC[J]. J Neurosci Res202210011): 2055-2076. [Baidu Scholar] 

    45

    Inanici FBrighton LNSSamejimaet al. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury[J]. IEEE Trans Neural Syst Rehabil Eng202129310-319. [Baidu Scholar] 

    46

    Pei XSJian JSYong Bet al. Safety and effectiveness of electromyography-induced rehabilitation treatment after epidural electrical stimulation for spinal cord injury: study protocol for a prospective, randomized, controlled trial[J]. Neural Regener Res2023184): 819-824. [Baidu Scholar] 

    47

    Anam ADa’in MYMuhammad DFet al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms[J]. Internat J Mol Sci20202120): 7533. [Baidu Scholar] 

    48

    黄靖任亚锋尚文雅. 脊髓损伤后微循环的调控机制及治疗策略[J/OL]. 解放军医学杂志1-14. (2024-03-05)[2024-05-23]. http://kns.cnki.net/kcms/detail/11.1056.R.20240305.1212.006.html. [Baidu Scholar] 

    Huang JRen YFShang YWet al. Regulatory mechanisms of the microcirculation and therapeutic strategies after SCI[J / OL]. The PLA Medical Journal: 1-14. (2024-03-05)[2024-05-23]. http://kns.cnki.net/kcms/detail/11.1056.R.20240305.1212.006.html. [Baidu Scholar] 

    286

    Views

    423

    Downloads

    0

    CSCD

    Alert me when the article has been cited
    Submit
    Tools
    Download
    Export Citation
    Share
    Add to favorites
    Add to my album

    Related Articles

    No data

    Related Author

    No data

    Related Institution

    No data
    0