Published:20 July 2024,
Received:06 April 2024,
Accepted:30 May 2024
Scan for full text
Cite this article
In recent years, the incidence of spinal cord injury (SCI) has shown an increasing trend, and the resulting motor impairment cause significant harm to patients themselves and public health. Although the current clinical treatments for motor disorders after SCI are diverse, mainly focusing on improving dysfunction and improving patients' daily living ability through external stimulation, there is still a lack of radical solutions. Epidural electrical stimulation (EES) as an emerging treatment technology, has been shown in a number of international clinical studies on the SCI significant potential of motor function recovery, has significant curative effect, convenient, widely applicable, adjustable advantages, the rehabilitation of movement disorders after SCI has a lot of big benefits, in the spinal cord injury rehabilitation has great prospect. However, most of the domestic research are limited to the neurogenic bladder caused by abnormal autonomic nerve function after SCI, and mostly combine traditional Chinese and western medicine rehabilitation treatment, the emerging therapy of EES, this paper aims to review the basic principle of EES, potential mechanism of action and its c linical application progress in the treatment of movement disorders after SCI, in order to provide reference for the clinical application and scientific research of EES treatment of motor disorders after SCI.
脊髓损伤(spinal cord injury, SCI)是指由于创伤或非创伤性因素导致的脊髓功能及其结构的异常,进而影响损伤水平以下的脊髓功能(运动、感觉、大小便功能)等障碍[
EES是一种电神经调控方法,已被证明可发现受损脊髓内的残余通路,用于研究外源性电刺激与脊髓感觉运动网络之间的相互作用。EES主要是通过在硬膜外放置电极,以特定模式刺激传入神经,以增加网络的兴奋性,以驱动自主和自主运动的控制反应,增强运动恢复的可塑性[
SCI可造成严重的中枢神经系统损害,历年来被全世界认为是无法治愈的损伤。EES作为目前最受关注的用于治疗SCI的治疗手段,通过重新激活残存的神经环路恢复SCI后肢体运动功能。目前大多数人认为,EES促进SCI患者运动功能的恢复主要与调节神经因子的表达与释放,促进神经再生和修复;提高神经元兴奋性,改善突触传导异常;调节炎症因子,减轻炎症反应;促进神经可塑性相关。
SCI后会导致受损部位及其周围脊髓组织的细胞死亡,特别是神经元作为神经系统的基本单位,是不可再生细胞,其损伤具有不可逆性,这也是SCI后康复的面临的关键所在。脊髓中央周围存在具有分化能力的细胞,在SCI后,可通过激活未损伤脊髓组织中的细胞,促进细胞分化和生长因子的分泌,代替受损神经元,促进神经系统功能的恢复[
脊髓运动神经元是运动产生的最后单位,其兴奋性决定了神经元是否产生动作电位并是否将信号传递到肌肉或其他神经元。因此,脊髓运动神经元的兴奋性在运动控制和神经调节中起着重要作用。且已有相关研究表明,EES可增加大鼠脊髓背柱髓鞘传入纤维兴奋性并促进运动功能的恢复[
SCI后会引起炎症反应,导致神经细胞凋亡和神经功能丧失,这些炎症反应包括细胞因子的释放、血管通透性的增加、白细胞的浸润[
神经修复是治疗SCI的关键,而这种修复建立在神经可塑性的基础之上。神经可塑性可以通过轴突再生、突触重组和功能重建来实现神经系统的修复和恢复[
SCI常会导致四肢瘫痪,根据脊髓损伤神经学分类国际标准[
Research | Scope of damage | Mode | Stimulate the position | Stimulus parameter | Observational indicators | Result |
---|---|---|---|---|---|---|
Williams, et al.[ | Cervical spinal cord | Surgical implantation | Dorsal electrode C2-C6, ventrally located on the sternum | Biphasic pulse (3-7 pulses; 0.2 ms; 333 Hz) | MEP for the biceps and radial extensor carpi |
1. The cathodic EES significantly increased the MEP amplitude above baseline (from 1 mA to 4 mA); the biceps motor output increased significantly with increased stimulation. 2. Cathodic EES increased the motor output of the radial wrist extensor muscle, and 35 mA EES increased its MEP by 4%. 3. The 3.4 mA anode EES inhibited MEP of the biceps and radial wrist extensors; 5 mA anode EES decreased the biceps sensitivity by 22%; and the radial extensor muscles by 28%. |
Lu, et al.[ | Cervical spinal cord | Surgical implantation | Epidural lead C1-T2, epidural electrode array C1-T1 | Dual-electrode combination stimulation (0.1-10.0 mA; 2-40 Hz; 210 μs) | Grip strength, repetition, accuracy, ARAT score, and ISNCSCI |
1. Maximum grip strength, extrusion release times, and accuracy were all improved during EES treatment. 2. EES improves EMG activity in the upper limb muscles. 3. EES increased the ARAT score by 20% and increased the ISNCSCI upper limb motor score from 9 to 32 and 17 to 33, respectively. |
MEP: motor evoked potentials; ARAT: action research arm test; ISNCSCI: international standards for neurological classification of spinal cord injury.
脊髓是连接大脑和下肢的重要神经通路,而协调行走的运动神经元大多存在于腰椎脊髓的通路中,一旦脊髓损伤,神经传导受阻或脊髓内的神经元受损或死亡,导致下肢无法接收到大脑发送的运动指令,从而引起下肢瘫痪。对SCI患者生活能力影响最大的是步行能力,因此,SCI患者康复的主要目标是实现步态重建,恢复下肢行走[
Research | Scope of damage | Mode | Stimulate the position | Stimulus parameter | Observational indicators | Result |
---|---|---|---|---|---|---|
Gorgey, et al.[ | 0772 C8;0773 T11 | Surgical implantation | T8-L10 segment and then permanently implanted in 0772 T11-L1 vertebral position;0773 T12-L1 (left lead) L1-L2 (right lead) | Double-electrode was combined with stimulation | EGM of lower limb or trunk muscles, exoskeleton-assisted walking performance, above-ground walking, and peak isometric torque |
1.At 30 Hz, 250 μs, 5.2 mA, EES cannot or rarely induce tonic activity; at 5.4 mA, induce a single muscle burst. 2. 0772 Under EES, it will move with different configurations but no voluntary movement; 0773 may bend in the lateral position under EES, inducing bilateral muscle activity under 20 Hz 400 μs 1.3 mA. 3. Both can adjust the torque under EES, and TTI is larger than voluntary attempts without EES or TTI induced by EES. 4. 0772 Stand under EES without self-upper limb balance assistance; 0773 Stand parallel with EES and upper limb self-balance assistance. 5. With exoskeleton assisted walking, both have larger steps and faster pace. |
Kathe, et al.[ | Lumbar spinal cord | Surgical implantation | T10-L2 | The 10 m walking test, weight-bearing ability, and WISCIⅡ score |
1. Improve the load-bearing capacity. 2. Walking can be achieved with EES and auxiliary equipment. 3. When stopping EES, lower limb motor scores increased significantly and walking was possible. |
EMG: electromyography; TTI: time-torque integral; WISCI Ⅱ: walking index for spinal cord injury Ⅱ.
脊髓是连接大脑和身体其他部位的重要神经通道,SCI常引起自主神经功能障碍,以T6及以上水平SCI更为明显[
Research | Scope of damage | Mode | Stimulate the position | Stimulus parameter | Observational indicators | Result |
---|---|---|---|---|---|---|
Chandrasekaran, et al.[ | Upper limb amputation | Surgical implantation | The dorsal epidural space of the C5-C8 spinal cord | Unipolar, multipolar electrodes were combined with stimulation (0-6 mA; 1-300 Hz; 50-1 000 µs) | Sensory perceptual response | The lateral EES evoked absent limb sensations and remained stable during the testing period. |
Angeli, et al.[ | Motor-complete SCI | Surgical implantation | Percutaneous spinal cord stimulation C3 and C5; at the T11-L1 vertebral level above the EES lumbosacral spinal cord (L1-S1 spinal segment) | Bidirectional pulse (1 ms; 5 kHz) | The EMG of the lower limb muscles |
1. Action evoked potential inhibition by EES stimulation during cervical percutaneous spinal stimulation. 2. Reduced variability of non-weight-bearing intentional step motor output and improved coordination under both stimuli. |
David, et al.[ | C6-T10 | Surgical implantation | T5 level | 16-400 Hz; 200-500 µs; 2-15 mA | Assessment of volitional muscle activity, BP, hemodynamic assessment, cognitive function tests, neurogenic bowel dysfunction score |
1. Activation of EES produces voluntary movement, and certain muscle groups can be activated by command during acute stimulation. 2. EES quickly applied stimulation according to the beak to restore blood pressure, and the symptoms of nausea and vomiting subsided. 3. Lying flat and leaning stimulated the beak higher than untilted EES cognitive function. |
BP : ambulatory blood pressure; EMG: electromyography.
SCI是一种复杂性的疾病,其核心病机为脊髓组织的损伤导致脊髓神经元或神经纤维的破坏,影响神经传导功能或脊髓损伤后的神经元凋亡、炎症反应、缺血再灌注损伤所致。因此,对SCI的治疗需要综合性的方案[
Research | Scope of damage | Mode | Stimulate the position | Stimulus parameter | Observational indicators | Result |
---|---|---|---|---|---|---|
Eleni, et al.[ | C7 | Surgical implantation | On the dura mater above the caudal forelimb region | 2 s/5 pulses; 500 Hz; 2.2 ms bidirectional pulses | MEP, MVC, EMG |
1. MVC under AUC showed a significant increase in muscle vitality by animals in the triple treatment combination group. 2. MVC muscle recordings at the time point of acute to chronic injury showed an increase in voluntary muscle activity in animals receiving the triple treatment combination. 3 .Chronic muscle recordings revealed increased evoked muscle activity in animals receiving the triple treatment combination. |
Fatma, et al.[ | Cervical spinal cord | Surgical implantation | The cathode electrode was placed at the midline of the neck skin, one above the level of injury and one below the level of injury; the anode electrode was placed symmetrically on the anterior iliac crest of the pelvis | Two-way or one-way pulse of 1 ms 30 Hz; 10 kHz | The ading of strength, sensation, grasp redefines assessment, lateral pinch, spasticity |
1. Percutaneous spinal cord stimulation improved hand strength and grasping ability, increasing upper limb motor scores by 3 points and increasing pinch strength by 2.4-4.8 times from baseline. 2. Percutaneous spinal cord stimulation improved muscle tone and improved the average participant spasticity by 5.3 points. 3. Percutaneous spinal stimulation improved autonomic function, improved urination control in participants 2 and 3 and reduced residual urine volume. |
Pei, et al.[ | SCI | Surgical implantation | The back of the spinal cord | 20-60 Hz; 200-300 μs; 0.1-1.0 mA | MMT |
MVC: maximum voluntary contraction; MMT: manual muscle testing; AUC: area under the concentration-time curve; EMG: electromyography.
总而言之,EES作为一种新型的神经调控策略,目前已有少量小规模临床实验证明,可用于治疗SCI后肢体运动障碍以恢复肢体运动,且疗效较为显著。但目前各项临床研究存在高度异质性,各个治疗方案选定的治疗部位、刺激参数、治疗疗效等方面存在较大差异,争议性较大。因此未来仍需要大量的前瞻性、多中心的临床试验研究,以为临床应用提供理论支持。
SCI是一种可导致严重的感觉、运动、自主神经功能障碍的神经系统状态[
曹烈虎, 牛丰, 张文财, 等. 创伤性脊柱脊髓损伤康复治疗专家共识(2020版)[J]. 中华创伤杂志, 2020, 36(5): 385-392. [Baidu Scholar]
Cao LH, Niu F, Zhang WC, et al. Consensus of Experts on Rehabilitation Treatment of Traumatic Spinal Cord Injury (2020 Edi)[J]. Chin J Traumatol, 2020, 36(5): 385-392. [Baidu Scholar]
Claudio AB, Laura S, Stefania B, et al. Epidemiology of traumatic spinal cord injury: a large population-based study[J]. Spinal cord, 2022, 60(9): 812-819. [Baidu Scholar]
Shenghui S, Chaoyu W, Wei W, et al. Sex-related differences in epidemiology, treatment and economic burden of traumatic spinal cord injury in China (2013-2018)[J]. Spine, 2023, 48(17): E288-E301. [Baidu Scholar]
陈星月, 陈栋, 陈春慧, 等.中国创伤性脊髓损伤流行病学和疾病经济负担的系统评价[J]. 中国循证医学杂志, 2018, 18(2): 143-150. [Baidu Scholar]
Chen XY, Chen D, Chen CH, et al. Systematic review of the epidemiology and disease economic burden of traumatic spinal cord injury in China[J]. Chin J Evid-based Med, 2018, 18(2): 143-150. [Baidu Scholar]
陈华德, 农飞玉, 梁翠娟, 等. 局部振动在脊髓损伤康复中的应用与研究进展[J]. 现代医药卫生, 2024, 40(5): 854-859. [Baidu Scholar]
Chen HD, Nong FY, Liang CJ, et al. Application and research progress of local vibration in spinal cord injury rehabilitation[J]. Modern Med Health, 2024, 40(5): 854-859. [Baidu Scholar]
王宁华, 顾新, 周谋望, 等. 基于循证医学证据的脊髓损伤患者躯干控制障碍康复评定和康复治疗专家共识[J]. 中国康复医学杂志, 2024, 39(3): 305-311. [Baidu Scholar]
Wang NH, Gu X, Zhou MW, et al. Expert consensus on the assessment and rehabilitation treatment of trunk control disorders in patients with spinal cord injury based on evidence-based medicine evidence[J]. Chin J Rehabil Med, 2024, 39(3): 305-311. [Baidu Scholar]
Michael K, Gregory H. Modern medical management of spinal cord injury[J]. Curr Neurol Neurosci Rep, 2019, 19(9): 65. [Baidu Scholar]
Eisdorfer JT, Smit RD, Keefe KM, et al. Epidural electrical stimulation: a review of plasticity mechanisms that are hypothesized to underlie enhanced recovery from spinal cord injury with stimulation[J]. Front Mol Neurosci, 2020, 13: 163. [Baidu Scholar]
韩妍, 陆洋, 王劲, 等. 硬膜外脊髓电刺激治疗脊髓损伤后运动障碍的研究进展[J]. 中华神经医学杂志, 2021, 20(10): 1070-1075. [Baidu Scholar]
Han Y, Lu Y, Wang J, et al. Progress in epidural spinal cord electrical stimulation for the treatment of motor disorders after SCI[J]. Chin J Neuromed, 2021, 20(10): 1070-1075. [Baidu Scholar]
Hersh AM, Weber-Levine C, Jiang K, et al. Spinal cord injury: emerging technologies[J]. Neurosurg Clin N Am, 2024, 35(2): 243-251. [Baidu Scholar]
Huang R, Worrell J, Garner E, et al. Epidural electrical stimulation of the cervical spinal cord opposes opioid-induced respiratory depression[J]. Physiol, 2022, 600(12): 2973-2999. [Baidu Scholar]
Augustinsson LE, Carlsson CA, Holm J, et al. Epidural electrical stimulation in severe limb ischemia. Pain relief, increased blood flow, and a possible limb-saving effect[J]. Ann Surg, 1985, 202(1): 104-110. [Baidu Scholar]
Marina G, Vladislav V, Randall CH, et al. Stem cells therapy for spinal cord injury[J]. Intern J Mol Sci, 2018, 19(4): 1039. [Baidu Scholar]
Sayanagi J, Acevedo-Cintrón JA, Pan D, et al. Brief electrical stimulation accelerates axon regeneration and promotes recovery following nerve transection and repair in mice[J]. J Bone Joint Surg Am, 2021, 103(20): e80-e80. [Baidu Scholar]
Sreyashi S, Kizzy V, Dipen P, et al. Transspinal direct current stimulation modulates migration and proliferation of adult newly born spinal cells in mice[J]. J Appl Physiol (1985), 2017, 122(2): 339-353. [Baidu Scholar]
Li G,Fan ZK, Gu GF, et al. Epidural spinal cord stimulation promotes motor functional recovery by enhancing oligodendrocyte survival and differentiation and by protecting myelin after spinal cord injury in rats[J]. Neurosci Bull, 2020, 36(4): 372-384. [Baidu Scholar]
Li Y, Hari K, Lucas-Osma AM, et al. Branching points of primary afferent fibers are vital for the modulation of fiber excitability by epidural DC polarization and by GABA in the rat spinal cord[J]. J Neurophysiol, 2020, 124(1): 49-62. [Baidu Scholar]
Elzbieta J, Dominik K, Francesco B, et al. Long-lasting increase in axonal excitability after epidurally applied DC[J]. J Neurophysiol, 2017, 118(2): 1210-1220. [Baidu Scholar]
Zaghloul A. Modulation of gamma and alpha spinal motor neurons activity by trans-spinal direct current stimulation: effects on reflexive actions and locomotor activity[J]. Physiol Rep, 2016, 4(3): e12696. [Baidu Scholar]
Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, et al. Inflammation: a target for treatment in spinal cord injury[J]. Cells, 2022, 11(17): 2692. [Baidu Scholar]
Liu X, Zhang Y, Wang Y, et al. Inflammatory response to spinal cord injury and its treatment[J]. World Neurosurg, 2021, 155: 19-31. [Baidu Scholar]
郭栋, 常素娥, 贺西京, 等. 间充质干细胞迁移治疗脊髓损伤的研究进展[J]. 重庆医科大学学报, 2022, 47(10): 1133-1138. [Baidu Scholar]
Guo D, Chang S, He XJ, et al. Advances in mesenchymal stem cell migration for treating spinal cord injury[J]. J Chongqing Med Univ, 2022, 47(10): 1133-1138. [Baidu Scholar]
Huo X, Zhang G, Wu C, et al. Electric field stimulation protects injured spinal cord from secondary inflammatory response in rats[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 1958-1961. [Baidu Scholar]
Wan N, Jianjun L, Qingbang X, et al. Spinal cord stimulation alleviates pain hypersensitivity by attenuating neuroinflammation in a model of painful diabetic neuropathy[J]. J Integrat Neurosci, 2023, 22(3): 67. [Baidu Scholar]
田婷, 李晓光. 脊髓损伤再生修复中的问题与挑战[J]. 中国组织工程研究, 2021, 25 (19): 3039-3048. [Baidu Scholar]
Tian T, Li XG.The Challenges and issues in spinal cord injury regeneration and repair[J]. Tissue Engin Res Chin, 2021, 25 (19): 3039-3048. [Baidu Scholar]
Zhou K, Wei W, Yang D, et al. Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury[J]. Nat Commun, 2024, 15 (1): 619. [Baidu Scholar]
Amer A, Martin JH. Repeated motor cortex theta-burst stimulation produces persistent strengthening of corticospinal motor output and durable spinal cord structural changes in the rat[J]. Brain Stimul, 2022, 15(4): 1013-1022. [Baidu Scholar]
Chalif IJ, Chavarro SV, Mensah E, et al. Epidural spinal cord stimulation for spinal cord injury in humans: a systematic review[J]. J Clin Med, 2024, 13 (4): 1090. [Baidu Scholar]
王一吉, 周红俊, 李建军, 等. 脊髓损伤神经学分类国际标准检查表最新修订及解读[J]. 中国康复理论与实践, 2015, 21(8): 879-882. [Baidu Scholar]
Wang YJ, Zhou HJ, Li JJ, et al. Latest revision and interpretation of international standard examination form for neurological classification of spinal cord injury[J]. Chin Rehabil Theory Pract, 2015, 21(8): 879-882. [Baidu Scholar]
李军, 王冲, 杜良杰, 等. 颈段脊髓损伤患者上肢功能重建手术认知度的问卷调查[J]. 中国康复理论与实践, 2017, 23 (2): 217-220. [Baidu Scholar]
Li J, Wang C, Du LJ, et al.Questionnaire recognition of upper limb functional reconstruction in patients with cervical SCI[J]. Rehabil Theory Pract Chin, 2017, 23 (2): 217-220. [Baidu Scholar]
Mehdy D, Andrea B, Parvin E, et al. Grasp analysis in the home environment as a measure of hand function after cervical spinal cord injury[J]. Neurorehabil Neural Repair, 2023, 37 (7): 466-474. [Baidu Scholar]
顾春雅, 程媛, 赵丽娟, 等. rTMS刺激运动前区改善脊髓损伤后肌张力障碍1例报告[J]. 四川大学学报(医学版), 2020, 51(5): 618-621. [Baidu Scholar]
Gu CY, Cheng Y, Zhao LJ, et al. Improvement of dystonia after spinal cord injury by applying repetitive transcranial magnetic stimulation on the premotor cortex: case report[J]. J Sichuan Univ ( Med Sci ), 2020, 51(5): 618-621. [Baidu Scholar]
Williams PTJA, Truong DQ, Seifert AC, et al. Selective augmentation of corticospinal motor drive with trans-spinal direct current stimulation in the cat[J]. Brain Stimul, 2022, 15 (3): 624-634. [Baidu Scholar]
Lu DC, Edgerton VR, Modaber M, et al. Engaging cervical spinal cord networks to reenable volitional control of hand function in tetraplegic patients[J]. Neurorehabil Neural Repair, 2016, 30(10): 951-962. [Baidu Scholar]
Koyama S, Tanabe S, Saitoh E, et al. Characterization of unexpected postural changes during robot-assisted gait training in paraplegic patients[J]. Spinal Cord, 2016, 54(2): 120-125. [Baidu Scholar]
Gorgey AS, Trainer R, Sutor TW, et al. A case study of percutaneous epidural stimulation to enable motor control in two men after spinal cord injury[J]. Nat Commun, 2023, 14(1): 2064. [Baidu Scholar]
Kathe C, Skinnider MA, Hutson TH, et al. The neurons that restore walking after paralysis[J]. Nature, 2022, 611(7936): 540-547. [Baidu Scholar]
张启富, 龙耀斌, 陈在娟, 等. 前庭康复训练治疗脊髓损伤后心脏和血压自主神经异常调控[J]. 实用医学杂志, 2016, 32(23): 3905-3907. [Baidu Scholar]
Zhang QF, Long YB, Chen ZJ, et al. Vestibular rehabilitation training for autonomic dysregulation of heart and blood pressure after spinal cord injury[J]. J Pract Med, 2016, 32(23): 3905-3907. [Baidu Scholar]
周谋望, 刘楠. 加强康复医疗质量管理与控制,促进脊髓损伤康复全面发展[J]. 中国康复医学杂志, 2018, 33(10): 1135-1136. [Baidu Scholar]
Zhou MW, Liu N.Strengthen the quality management and control of rehabilitation medicine to promote the comprehensive development of spinal cord injury rehabilitation[J]. Chin J Rehabil Med, 2018, 33(10): 1135-1136. [Baidu Scholar]
Chandrasekaran S, Nanivadekar AC, McKernan G, et al. Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees[J]. eLife, 2020, 9: e54349. [Baidu Scholar]
Angeli CA, Gerasimenko Y. Combined cervical transcutaneous with lumbosacral epidural stimulation improves voluntary control of stepping movements in spinal cord injured individuals[J]. Front Bioeng Biotechnol, 2023, 11: 1073716. [Baidu Scholar]
Darrow D, Balser D, Netoff TI, et al. Epidural spinal cord stimulation facilitates immediate restoration of dormant motor and autonomic supraspinal pathways after chronic neurologically complete spinal cord injury[J]. J Neurotrauma, 2019, 36(15): 2325-2336. [Baidu Scholar]
Ahuja CS, Fehlings M. Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury[J]. Stem Cells Transl Med, 2016, 5(7): 914-924. [Baidu Scholar]
Sinopoulou E, Spejo AB, Roopnarine N, et al. Chronic muscle recordings reveal recovery of forelimb function in spinal injured female rats after cortical epidural stimulation combined with rehabilitation and chondroitinase ABC[J]. J Neurosci Res, 2022, 100(11): 2055-2076. [Baidu Scholar]
Inanici F, Brighton LN, SSamejimaet al. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury[J]. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 310-319. [Baidu Scholar]
Pei XS, Jian JS, Yong B, et al. Safety and effectiveness of electromyography-induced rehabilitation treatment after epidural electrical stimulation for spinal cord injury: study protocol for a prospective, randomized, controlled trial[J]. Neural Regener Res, 2023, 18(4): 819-824. [Baidu Scholar]
Anam A, Da’in MY, Muhammad DF, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms[J]. Internat J Mol Sci, 2020, 21(20): 7533. [Baidu Scholar]
黄靖, 任亚锋, 尚文雅, 等. 脊髓损伤后微循环的调控机制及治疗策略[J/OL]. 解放军医学杂志: 1-14. (2024-03-05)[2024-05-23]. http://kns.cnki.net/kcms/detail/11.1056.R.20240305.1212.006.html. [Baidu Scholar]
Huang J, Ren YF, Shang YW, et al. Regulatory mechanisms of the microcirculation and therapeutic strategies after SCI[J / OL]. The PLA Medical Journal: 1-14. (2024-03-05)[2024-05-23]. http://kns.cnki.net/kcms/detail/11.1056.R.20240305.1212.006.html. [Baidu Scholar]
286
Views
423
Downloads
0
CSCD
Related Articles
Related Author
Related Institution