1.中山大学附属第三医院生殖医学中心,广东 广州,510630
2.中山大学附属第三医院皮肤与整形美容科, 广东 广州,510630
夏婷婷,第一作者,中山大学附属第一医院妇产科学2008级硕士,E-mail:xiatting@mail.sysu.edu.cn。
[ "黄怀球,通信作者,中山大学附属第三医院皮肤科教授、主任医师、医学博士、博士生导师。国际人类动物真菌学会(ISHAM)成员,国际人类动物真菌学会孢子丝菌病研究协作小组成员,中国菌物学会医学真菌专业委员会委员,广东省预防医学会过敏病预防与控制专业委员会副主任委员,广东省保健协会皮肤科和美容保健分会副主任委员,中华医学会皮肤科分会真菌学组委员,中华医学会广东省皮肤科分会真菌学组原副组长,中国医师协会皮肤科分会真菌专业委员会委员,中华预防学会皮肤感染专业委员会委员,中国中西医结合皮肤科学会甲病学组委员。荷兰皇家真菌生物多样性研究中心、意大利墨西拿大学交流访问学者,《热带医学杂志》编委。研究方向为医学真菌病,主要包括深部真菌病孢子丝菌病的发病机制、真菌耐药机制研究、病原真菌孢子丝菌复合体基因组转录组及功能基因的研究。主持包括2项国家自然基金和1项广州市科技重点研发项目等省部级以上课题 10项。获中华医学会皮肤科优秀论文奖、中山大学医疗成果奖。E-mail:hhuaiq@mail.sysu.edu.cn" ]
纸质出版日期:2024-09-20,
收稿日期:2024-05-28,
录用日期:2024-08-12
移动端阅览
夏婷婷,黄怀球.雌激素和Candidalysin在外阴阴道念珠菌病中的研究进展[J].中山大学学报(医学科学版),2024,45(05):677-682.
XIA Tingting,HUANG Huaiqiu.Research Progress on Estrogen and Candidalysin in Vulvovaginal Candidiasis[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(05):677-682.
夏婷婷,黄怀球.雌激素和Candidalysin在外阴阴道念珠菌病中的研究进展[J].中山大学学报(医学科学版),2024,45(05):677-682. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240907.009.
XIA Tingting,HUANG Huaiqiu.Research Progress on Estrogen and Candidalysin in Vulvovaginal Candidiasis[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(05):677-682. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240907.009.
外阴阴道念珠菌病(VVC)主要由白念珠菌(CA)引起。增加外周血雌激素水平如怀孕、口服避孕药的使用和激素替代疗法等增加VVC易感性。雌激素可通过调控CA菌丝生
长、宿主固有免疫细胞和阴道上皮细胞的免疫功能等多种方式影响VVC进展,但具体机制仍不清楚。Candidalysin(CL)是一种对黏膜感染至关重要的真菌肽毒素,在CA感染中起着重要作用。CL由
ECE1
基因编码,雌激素调控
ECE1
表达。本文就雌激素和CL与 VVC之间相关性进行综述,为进一步明确雌激素和CL在VVC发病机制中的作用提供参考。
Candida albicans
(CA) is the predominant cause of vulvovaginal Candidiasis (VVC). Increasing circulatory estrogen levels such as pregnancy, the use of oral contraceptives, and hormone replacement therapy predispose women to VVC. Estrogen affects the progression of VVC by regulating the growth of CA hyphae, the immune response of the innate immune cells and epithelial cells of host vaginal, but the mechanism is unclear till now. Candidalysin (CL) is a fungal peptide toxin critical for mucosal infection and plays an important role in the CA infection. CL was encoded by
ECE1
, which was regulated by estrogen. This article reviews the correlation between estrogen, CL, and VVC for further clarifying the role of estrogen and CL in the pathogenesis of VVC.
白念珠菌外阴阴道念珠菌病雌激素Candidalysin炎症
Candida albicansvulvovaginal candidiasisestrogenCandidalysininflammation
Jafarzadeh L, Ranjbar M, Nazari T, et al. Vulvovaginal candidiasis: an overview of mycological, clinical, and immunological aspects[J]. J Obstet Gynaecol Res, 2022, 48(7): 1546-1560.
Messina A, Mariani A, Brandolisio R, et al. Candidiasis in pregnancy: relevant aspects of the pathology for the mother and the fetus and therapeutic strategies[J]. Trop Med Infect Dis, 2024, 9(5):1-12.
Zhang X, Essmann M, Burt ET, et al. Estrogen effects on Candida albicans: a potential virulence-regulating mechanism[J]. J Infect Dis, 2000, 181(4): 1441-1446.
Kumwenda P, Cottier F, Hendry AC, et al. Estrogen promotes innate immune evasion of Candida albicans through inactivation of the alternative complement system[J]. Cell Rep, 2022, 38(1): 110183.
White S, Larsen B. Candida albicans morphogenesis is influenced by estrogen[J]. Cell Mol Life Sci, 1997, 53(9): 744-749.
Richardson JP, Mogavero S, Moyes DL, et al. Processing of Candida albicans ece1p is critical for candidalysin maturation and fungal virulence[J]. mBio, 2018, 9(1): e02178-17.
Moyes DL, Wilson D, Richardson JP, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection[J]. Nature, 2016, 532(7597): 64-68.
Richardson JP, Brown R, Kichik N, et al. Candidalysins are a new family of cytolytic fungal peptide toxins[J]. mBio, 2022, 13(1): e0351021.
Bataineh MTA, Cacciatore S, Semreen MH, et al. Exploring the effect of estrogen on Candida albicans hyphal cell wall glycans and ergosterol synthesis[J]. Front Cell Infect Microbiol, 2022, 12: 977157.
荆方轶, 范瑞强, 陈信生. 外阴阴道念珠菌病的相关免疫机制研究进展[J]. 广东医学, 2016, 37(S1): 249-251.
Jing FY, Fan RQ, Chen XS. Research progress on immune mechanisms related to vulvovaginal candidiasis[J]. J Guangdong Med, 2016, 37(S1): 249-251.
Gonçalves B, Ferreira C, Alves CT, et al. Vulvovaginal candidiasis: epidemiology, microbiology and risk factors[J]. Crit Rev Microbiol, 2016, 42(6): 905-927.
Denning DW, Kneale M, Sobel JD, et al. Global burden of recurrent vulvovaginal candidiasis: a systematic review[J]. Lancet Infect Dis, 2018, 18(11): e339-e347.
Sobel JD. Vulvovaginal candidosis[J]. Lancet (London, England), 2007, 369(9577): 1961-1971.
Willems HME, Ahmed SS, Liu J, et al. Vulvovaginal candidiasis: a current understanding and burning questions[J]. J Fungi (Basel), 2020, 6(1): 27.
Felix TC, De Brito Röder DVD, Dos Santos Pedroso R. Alternative and complementary therapies for vulvovaginal candidiasis[J]. Folia Microbiol (Praha), 2019, 64(2): 133-141.
Achkar JM, Fries BC. Candida infections of the genitourinary tract[J]. Clin Microbiol Rev, 2010, 23(2): 253-273.
Jacobsen ID, Wilson D, Wächtler B, et al. Candida albicans dimorphism as a therapeutic target[J]. Expert Rev Anti Infect Ther, 2012, 10(1): 85-93.
Blakemore J, Naftolin F. Aromatase: contributions to physiology and disease in women and men[J]. Physiology (Bethesda, Md), 2016, 31(4): 258-269.
Gillies GE, Mcarthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines[J]. Pharmacol Rev, 2010, 62(2): 155-198.
Skowronski R, Feldman D. Characterization of an estrogen-binding protein in the yeast Candida albicans[J]. Endocrinology, 1989, 124(4): 1965-1972.
De Micheli M, Bille J, Schueller C, et al. A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance[J]. Mol Microbiol, 2002, 43(5): 1197-1214.
Cheng G, Yeater KM, Hoyer LL. Cellular and molecular biology of Candida albicans estrogen response[J]. Eukaryot Cell, 2006, 5(1): 180-191.
He Y, Tang R, Deng J, et al. Effects of oestrogen on vulvovaginal candidosis[J]. Mycoses, 2022, 65(1): 4-12.
Salinas-Muñoz L, Campos-Fernández R, Mercader E, et al. Estrogen receptor-alpha (ESR1) governs the lower female reproductive tract vulnerability to Candida albicans[J]. Front Immunol, 2018, 9: 1033.
Davis D. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis[J]. Curr Genet, 2003, 44(1): 1-7.
Richardson JP, Willems HME, Moyes DL, et al. Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa[J]. Infect Immun, 2018, 86(2): e00645-17.
Wagner RD, Johnson SJ. Probiotic lactobacillus and estrogen effects on vaginal epithelial gene expression responses to Candida albicans[J]. J Biomed Sci, 2012, 19(1): 58.
Luan T, Liu X, Mao P, et al. The role of 17β-estrogen in Candida albicans adhesion on human vaginal epithelial cells via FAK phosphorylation[J]. Mycopathologia, 2020, 185(3): 425-438.
Ferrer J. Vaginal candidosis: epidemiological and etiological factors[J]. Int J Gynaecol Obstet, 2000, 71 Suppl 1: S21-27.
Lasarte S, Elsner D, Guía-González M, et al. Female sex hormones regulate the Th17 immune response to sperm and Candida albicans[J]. Hum Reprod, 2013, 28(12): 3283-3291.
Hai TP, Van AD, Ngan NTT, et al. The combination of tamoxifen with amphotericin B, but not with fluconazole, has synergistic activity against the majority of clinical isolates of Cryptococcus neoformans[J]. Mycoses, 2019, 62(9): 818-825.
Carrara MA, Donatti L, Damke E, et al. A new model of vaginal infection by Candida albicans in rats[J]. Mycopathologia, 2010, 170(5): 331-338.
Fidel PL, Jr., Cutright J, Steele C. Effects of reproductive hormones on experimental vaginal candidiasis[J]. Infect Immun, 2000, 68(2): 651-657.
Harriott MM, Lilly EA, Rodriguez TE, et al. Candida albicans forms biofilms on the vaginal mucosa[J]. Microbiology (Reading), 2010, 156(Pt 12): 3635-3644.
Swidergall M, Khalaji M, Solis NV, et al. Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection[J]. J Infect Dis, 2019, 220(9): 1477-1488.
Allert S, Förster TM, Svensson CM, et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers[J]. mBio, 2018, 9(3): e00915-18.
Chu H, Duan Y, Lang S, et al. The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease[J]. J Hepatol, 2020, 72(3): 391-400.
Mogavero S, Sauer FM, Brunke S, et al. Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by Candida albicans[J]. Cell Microbiol, 2021, 23(10): e13378.
Russell CM, Schaefer KG, Dixson A, et al. The Candida albicans virulence factor candidalysin polymerizes in solution to form membrane pores and damage epithelial cells[J]. Elife, 2022, 11.
Russell CM, Rybak JA, Miao J, et al. Candidalysin: connecting the pore forming mechanism of this virulence factor to its immunostimulatory properties[J]. J Biol Chem, 2023, 299(2): 102829.
Nikou SA, Zhou C, Griffiths JS, et al. The Candida albicans toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways[J]. Sci Signal, 2022, 15(728): eabj6915.
Ho J, Wickramasinghe DN, Nikou SA, et al. Candidalysin is a potent trigger of alarmin and antimicrobial peptide release in epithelial cells[J]. Cells, 2020, 9(3): 699.
Verma AH, Richardson JP, Zhou C, et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin[J]. Sci Immunol, 2017, 2(17): eaam8834.
Li X, Leonardi I, Iliev ID. Candidalysin sets off the innate alarm[J]. Sci Immunol, 2017, 2(17): eaao5703.
Blagojevic M, Camilli G, Maxson M, et al. Candidalysin triggers epithelial cellular stresses that induce necrotic death[J]. Cell Microbiol, 2021, 23(10): e13371.
Kasper L, König A, Koenig PA, et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes[J]. Nat Commun, 2018, 9(1): 4260.
Bras G, Satala D, Juszczak M, et al. Secreted aspartic proteinases: key factors in candida infections and host-pathogen interactions[J]. Int J Mol Sci, 2024, 25(9):1-25.
Mao X, Qiu X, Jiao C, et al. Candida albicans SC5314 inhibits NLRP3/NLRP6 inflammasome expression and dampens human intestinal barrier activity in Caco-2 cell monolayer model[J]. Cytokine, 2020, 126: 154882.
0
浏览量
17
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构