1.中山大学附属第一医院麻醉科,广东 广州 510080
2.中山大学医学院生理教研室,广东 深圳 518107
肖力,第一作者,研究方向:阿片类药物诱发的痛觉过敏及镇痛耐受,E-mail: xiaol38@mail3.sysu.edu.cn
崔宇,通信作者,中山大学中山医学院生理学2003级博士,副教授,研究方向:阿片类药物诱发的痛觉过敏及镇痛耐受,E-mail: cuiyu2@mail.sysu.edu.cn
纸质出版日期:2024-09-20,
收稿日期:2024-05-30,
录用日期:2024-08-12
移动端阅览
肖力,王晓娥,黄文起等.伊伐布雷定抑制瑞芬太尼诱导的小鼠痛觉过敏[J].中山大学学报(医学科学版),2024,45(05):694-700.
XIAO Li,WANG Xiaoe,HUANG Wenqi,et al.Ivabradine Prevents Remifentanil Induced Hyperalgesia in Mice[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(05):694-700.
肖力,王晓娥,黄文起等.伊伐布雷定抑制瑞芬太尼诱导的小鼠痛觉过敏[J].中山大学学报(医学科学版),2024,45(05):694-700. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240907.010.
XIAO Li,WANG Xiaoe,HUANG Wenqi,et al.Ivabradine Prevents Remifentanil Induced Hyperalgesia in Mice[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(05):694-700. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240907.010.
目的
2
探讨外周超极化激活环核苷酸门控(HCN)离子通道抑制剂伊伐布雷定(ivabradine)对瑞芬太尼诱导的痛觉过敏的作用。
方法
2
成年雄性C57/BL6小鼠尾静脉输注瑞芬太尼 2 μg/(kg·min)1 h建立痛觉过敏模型。在瑞芬太尼输注前30 min皮下注射伊伐布雷定(5 mg/kg),观察对瑞芬太尼诱导痛觉过敏的作用。40只小鼠被平均随机分成4组:生理盐水组(saline)、瑞芬太尼组(remifentanil)、瑞芬太尼+溶剂组(remifentanil + vehicle)、瑞芬太尼+伊伐布雷定组(remifentanil + ivabradine)。其中,每组取6只小鼠用于观察瑞芬太尼或生理盐水输注前1 d (baseline),输注后1 d、3 d和5 d机械和热痛阈值。每组取4只小鼠,采用免疫荧光法检测瑞芬太尼或生理盐水输注后1 d脊髓背角c-Fos阳性细胞的数量。
结果
2
与生理盐水组相比,瑞芬太尼输注后1 d和3 d机械痛和热痛阈值显著降低(
P
<
0.001),同时瑞芬太尼输注后1 d脊髓背角c-Fos阳性神经元数量显著增加(
P
<
0.001)。与溶剂组相比,皮下注射伊伐布雷定有效抑制瑞芬太尼诱导的痛觉过敏(
P
<
0.001),并且抑制瑞芬太尼输注后1 d脊髓背角c-Fos阳性神经元数量的增加(
P
<
0.001)。
结论
2
伊伐布雷定可能通过抑制外周伤害性初级感觉神经元到脊髓的兴奋性传入,有效抑制瑞芬太尼诱导的小鼠痛觉过敏。
Objective
2
To investigate the effect of ivabradine, an inhibitor of peripheral HCN channel, on remifentanil-induced hyperalgesia in mice.
Methods
2
The model of remifentanil-induced hyperalgesia was established by intravenously infusing remifentanil 2 μg/(kg·min) for 1 h through tail vein of adult male C57/BL6 mice. To observe the effect of ivabradine on remifentanil induced hyperalgesia, ivabradine (5 mg/kg) was injected subcutaneously 30 minutes before remifentanil infusion. Forty mice were equally and randomly divided into 4 groups: saline group, remifentanil group, remifentanil + vehicle group and remifentanil + ivabradine group. In each group, six mice were used to test mechanical and thermal pain thresholds at 24 h before (baseline) and on 1 d, 3 d, 5 d after remifentanil or saline infusion. Four mice of each group were used to detected c-Fos positive cell in spinal dorsal horn by immunofluorescence on 1 d after remifentanil or saline infusion.
Results
2
Compared with the saline group, a significant decrease in mechanical or thermal threshold was observed on 1 d and 3 d after remifentanil infusion (
P
<
0.001), and the number of c-Fos positive neurons in the lumbar dorsal horn increased significantly (
P
<
0.001). Compared with vehicle group, subcutaneous injection of ivabradine effectively inhibited remifentanil induced hyperalgesia (
P
<
0.001) and blocked the increase of c-Fos positive neurons in the lumbar dorsal horn on 1 d following remifentanil treatment (
P
<
0.001).
Conclusions
2
Ivabradine could effectively prevent remifentanil-induced hyperalgesia in mice. The possible mechanism underlying this effect is that ivabradine suppresses the enhanced peripheral nociceptive input onto spinal cord neurons.
瑞芬太尼痛觉过敏伊伐布雷定小鼠c-Fos环核苷酸门控
remifentanilhyperalgesiaivabradinemicec-Foshyperpolarization activated cyclic nucleotide gated
Jin Y, Mao Y, Chen D, et al. Thalamocortical circuits drive remifentanil-induced postoperative hyperalgesia[J]. J Clin Invest, 2022, 132(24): e158742.
Ye L, Xiao L, Yang SY, et al. Cathepsin S in the spinal microglia contributes to remifentanil-induced hyperalgesia in rats[J]. Neuroscience, 2017, 344: 265-275.
Corder G, Tawfik VL, Wang D, et al. Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia[J]. Nature medicine, 2017, 23(2): 164-173.
Sun J, Chen SR, Chen H, et al. μ-opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioid-induced hyperalgesia[J]. J Physiol, 2019, 597(6): 1661-1675.
Khomula EV, Araldi D, Levine JD. In vitro nociceptor neuroplasticity associated with in vivo opioid-induced hyperalgesia[J]. J Neurosci, 2019, 39(36): 7061-7073.
Gong K, Bhargava A, Jasmin L. GluN2B N-methyl-D-aspartate receptor and excitatory amino acid transporter 3 are upregulated in primary sensory neurons after 7 days of morphine administration in rats: implication for opiate-induced hyperalgesia[J]. Pain, 2016, 157(1): 147-158.
Sartiani L, Mannaioni G, Masi A, et al. The hyperpolarization-activated cyclic nucleotide-gated channels: from biophysics to pharmacology of a unique family of ion channels[J]. Pharmacol Rev, 2017, 69(4): 354-395.
杨舒蕾, 雷晓露, 刘晓红. HCN通道对大鼠脊髓背角神经元P2X受体功能的调节作用[J]. 遵义医科大学学报, 2023, 46(6): 546-552.
Yang SL, Lei XL, Liu XH, et al. Regulatory effect of HCN channel on P2X receptor function in rat spinal dorsal horn neurons[J]. J Zunyi Med Univ, 2023, 46(6): 546-552.
Tsantoulas C, Lainez S, Wong S, et al. Hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy[J]. Sci Transl Med, 2017, 9(409): eaam6072.
Richards N, Dilley A. Contribution of hyperpolarization-activated channels to heat hypersensitivity and ongoing activity in the neuritis model[J]. Neuroscience, 2015, 284: 87-98.
Hunt SP, Pini A, Evan G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation[J]. Nature, 1987, 328(6131): 632-634.
Harris JA. Using c-fos as a neural marker of pain[J]. Brain Res Bull, 1998, 45(1): 1-8.
Young GT, Emery EC, Mooney ER, et al. Inflammatory and neuropathic pain are rapidly suppressed by peripheral block of hyperpolarisation-activated cyclic nucleotide-gated ion channels[J]. Pain, 2014, 155(9): 1708-1719.
Cabanero D, Campillo A, Celerier E, et al. Pronociceptive effects of remifentanil in a mouse model of postsurgical pain: effect of a second surgery[J]. Anesthesiology, 2009, 111(6): 1334-1345.
Lee M, Silverman SM, Hansen H, et al. A comprehensive review of opioid-induced hyperalgesia[J]. Pain Physician, 2011, 14(2): 145-161.
罗妮, 郑卫红, 李余星. 神经病理性疼痛机制的研究进展[J]. 广东医学, 2015, 36(1): 147-150.
Luo N, Zheng WH, Li YX, et al. Research progress on the mechanism of neuropathic pain[J]. J Guangdong Med, 2015, 36(1): 147-150.
Ye L, Xiao L, Bai X, et al. Spinal mitochondrial-derived ROS contributes to remifentanil-induced postoperative hyperalgesia via modulating NMDA receptor in rats[J]. Neurosci Lett, 2016, 634: 79-86.
Horii Y, Matsuda M, Takemura H, et al. Spinal and peripheral mechanisms individually lead to the development of remifentanil-induced hyperalgesia[J]. Neuroscience, 2020, 446: 28-42.
Coggeshall RE. Fos, nociception and the dorsal horn[J]. Prog Neurobiol, 2005, 77(5): 299-352.
Terayama R, Kishimoto N, Yamamoto Y, et al. Convergent nociceptive input to spinal dorsal horn neurons after peripheral nerve injury[J]. Neurochem Res, 2015, 40(3): 438-445.
Nasu T, Kainuma R, Ota H, et al. Increased nociceptive behaviors and spinal c-Fos expression in the formalin test in a rat repeated cold stress model[J]. Neurosci Res, 2024, 198: 30-38.
Ramirez D, Zuniga R, Concha G, et al. HCN channels: new therapeutic targets for pain treatment[J]. Molecules, 2018, 23(9): 2094.
Cavalcante TMB, De Melo JMaJ, Lopes LB, et al. Ivabradine possesses anticonvulsant and neuroprotective action in mice[J]. Biomed Pharmacother, 2019, 109: 2499-2512.
Tsantoulas C, Ng A, Pinto L, et al. HCN2 ion channels drive pain in rodent models of migraine[J]. J Neurosci, 2022, 42(40): 7513-7529.
Stieber J, Wieland K, Stockl G, et al. Bradycardic and proarrhythmic properties of sinus node inhibitors[J]. Mol Pharmacol, 2006, 69(4): 1328-1337.
Avidor-Reiss T, Nevo I, Levy R, et al. Chronic opioid treatment induces adenylyl cyclase V superactivation. Involvement of Gbetagamma[J]. J Biol Chem, 1996, 271(35): 21309-21315.
Lainez S, Tsantoulas C, Biel M, et al. HCN3 ion channels: roles in sensory neuronal excitability and pain[J]. J Physiol, 2019, 597(17): 4661-4675.
Tibbs GR, Rowley TJ, Sanford RL, et al. HCN1 channels as targets for anesthetic and nonanesthetic propofol analogs in the amelioration of mechanical and thermal hyperalgesia in a mouse model of neuropathic pain[J]. J Pharmacol Exp Ther, 2013, 345(3): 363-373.
0
浏览量
33
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构