浏览全部资源
扫码关注微信
1.华南理工大学医学院,广东 广州 510006
2.广东省人民医院医学研究部//广东省医学科学院//南方医科大学, 广东 广州 510006
高力,第一作者,研究方向:肿瘤代谢调控的分子机制,E-mail:202120157241@mail.scut.edu.cn
纸质出版日期:2025-01-20,
收稿日期:2024-10-11,
录用日期:2024-11-19
移动端阅览
高力, 沈晟齐, 高平. 纳米孔长读测序鉴定肝癌细胞中低氧特异性转录本[J]. 中山大学学报(医学科学版), 2025,46(1):88-97.
GAO LI, SHEN SHENGQI, GAO PING. Identification of Hypoxia-specific Transcripts in Liver Cancer Cells via Nanopore Long-read Sequencing. [J]. Journal of sun yat-sen university(medical sciences), 2025, 46(1): 88-97.
高力, 沈晟齐, 高平. 纳米孔长读测序鉴定肝癌细胞中低氧特异性转录本[J]. 中山大学学报(医学科学版), 2025,46(1):88-97. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20241119.001.
GAO LI, SHEN SHENGQI, GAO PING. Identification of Hypoxia-specific Transcripts in Liver Cancer Cells via Nanopore Long-read Sequencing. [J]. Journal of sun yat-sen university(medical sciences), 2025, 46(1): 88-97. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20241119.001.
目的
2
应用纳米孔长读长测序技术,深入分析正常肝实质细胞和肝癌细胞在低氧环境下的特异性转录组变化,以期阐明肿瘤细胞在低氧条件下生存与转移的内在机制,从而为肿瘤的精准靶向治疗开辟新的视角与策略。
方法
2
实验选取正常肝实质细胞系THLE-3与肝癌细胞系Hep3B作为研究对象,分别置于常氧与低氧条件下培养48 h后,提取其总RNA。随后,采用纳米孔测序技术,对这两种细胞系在不同氧浓度下的转录组进行高通量、高精度的测序分析。
结果
2
本研究成功构建了基于纳米孔三代测序技术的低氧转录本数据集,展现了前所未有的测序精度。通过GO(gene ontology)富集分
析,我们系统地挖掘了参与低氧响应的关键生物通路(
P
<0.05)。进一步地,结合分子动力学模拟方法,我们深入探究了溶质载体家族1成员5(SLC1A5)在低氧特异性转录本翻译过程中,其蛋白质结构所发生的动态变化,为理解其功能调控提供了直接证据。
结论
2
纳米孔长读长测序技术的应用,不仅成功捕捉到了低氧条件下mRNA的特征性表达模式及特异性转录本,同时为深入探索低氧微环境下的转录组复杂性提供了强有力的技术支撑。在进一步结合蛋白结构模拟以及分子动力学的基础上,对低氧微环境中的蛋白结构提出新的探索路径。本研究的发现,不仅丰富了低氧特异性转录组学的研究内容,为低氧特异性蛋白结构探索提供了更可靠的数据基础,更为未来肿瘤的靶向治疗策略提供了低氧特异性的潜在靶点。
Objective
2
Objective Leveraging the advanced capabilities of nanopore long-read sequencing technology, our study undertook a comprehensive analysis of the distinct transcriptomic alterations occurring in normal liver parenchymal cells and liver cancer cells subjected to hypoxic conditions. The primary goal was to elucidate the underlying mechanisms governing tumor cell survival and metastasis in low-oxygen environments, thereby paving the way for innovative targeted cancer therapies.
Methods
2
The normal liver parenchymal cell line THLE-3 and the hepatocellular carcinoma cell line Hep3B were chosen as the focal points of this investigation. Following a 48-hour incubation period in both normoxic and hypoxic conditions, total RNA was extracted from these cells. Subsequently, we employed nanopore sequencing technology to conduct a high-throughput, high-fidelity analysis of the transcriptomes of these two cell lines across different oxygen levels.
Results
2
This study established a hypoxic transcriptome dataset using third-generation nanopore sequencing technology, achieving an unprecedented level of sequencing accuracy. By conducting a Gene Ontology (GO) enrichment analysis, we systematically identified and explored the key biological pathways associated with the hypoxic response (
P
<0.05). Furthermore, we integrated molecular dynamics simulation techniques to gain deeper insights into the dynamic structural changes of Solute Carrier Family 1 Member 5 (SLC1A5) during the translat
ion of hypoxic-specific subtypes, providing direct evidence to elucidate its functional regulation.
Conclusion
2
The application of nanopore long-read sequencing technology has proven to be a powerful tool, not only successfully capturing the distinctive expression patterns and specific subtypes of mRNA under hypoxic conditions, but also offering robust technical support for delving into the intricate transcriptomic landscape of hypoxic microenvironments. By further integrating protein structure simulations and molecular dynamics, we have proposed novel avenues for exploring protein structures in hypoxic microenvironments. The findings of this study have significantly enriched the field of hypoxic-specific transcriptomics, providing a more reliable data foundation for investigating hypoxic-specific protein structures. Moreover, these discoveries have unveiled potential hypoxic-specific targets that could be harnessed for the development of future targeted cancer treatment strategies.
纳米孔测序低氧转录本可变剪切肝癌
nanopore sequencinghypoxiatranscriptalternative splicinghepatocellular carcinoma
Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability[J]. Nat Rev Can, 2008, 8(3): 180-192.
Chen Z, Han F, Du Y, et al. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions[J]. Signal transduct Target Ther, 2023, 8(1): 70.
Schödel J, Ratcliffe PJ. Mechanisms of hypoxia signalling: new implications for nephrology[J]. Nat Rev Nephrol, 2019, 15(10): 641-659.
Zhang H, Zhao X, Guo Y, et al. Hypoxia regulates overall mRNA homeostasis by inducing Met(1)-linked linear ubiquitination of AGO2 in cancer cells[J]. Nat Commun 2021, 12(1): 5416.
Chee NT, Lohse I, Brothers SP. mRNA-to-protein translation in hypoxia[J]. Mol Cancer, 2019, 18(1): 49.
Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond[J]. Nat Rev Mol Cell Bio, 2020, 21(5): 268-283.
Mudge JM, Frankish A, Fernandez-Banet J, et al. The origins, evolution, and functional potential of alternative splicing in vertebrates[J]. Mol Biol Evol, 2011, 28(10): 2949-2959.
Metzker ML. Sequencing technologies - the next generation[J]. Nat Rev Genet, 2010, 11(1): 31-46.
Krause M, Niazi AM, Labun K, et al. Tailfindr: alignment-free poly(A) length measurement for Oxford Nanopore RNA and DNA sequencing[J]. RNA (New York, NY), 2019, 25(10): 1229-1241.
Porubsky D, Eichler EE. A 25-year odyssey of genomic technology advances and structural variant discovery[J]. Cell, 2024, 187(5): 1024-1037.
Sedlazeck FJ, Lee H, Darby CA, et al. Piercing the dark matter: bioinformatics of long-range sequencing and mapping[J]. Nat Rev Genet, 2018, 19(6): 329-346.
Amarasinghe SL, Su S, Dong X, et al. Opportunities and challenges in long-read sequencing data analysis[J]. Genome Bio, 2020, 21(1): 30.
Sun YH, Wang A, Song C, et al. Single-molecule long-read sequencing reveals a conserved intact long RNA profile in sperm[J]. Nat Commun, 2021, 12(1): 1361.
Scalise M, Pochini L, Console L, et al. The human SLC1A5 (ASCT2) amino acid transporter: from function to structure and role in cell biology[J]. Front Cell Dev Biol, 2018, 6: 96.
Hassanein M, Hoeksema MD, Shiota M, et al. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival[J]. Clin Cancer Res, 2013, 19(3): 560-570.
Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy[J]. Nat Rev Can, 2016, 16(10): 619-634.
Yoo HC, Park SJ, Nam M, et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells[J]. Cell Metab, 2020, 31(2): 267-283.e212.
Jain M, Olsen HE, Paten B, et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community[J]. Genome Biol, 2016, 17(1): 239.
Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology[J]. Cell Metab, 2018, 27(2): 281-298.
孙建英, 陈禧钰, 王理, 等. 缺氧诱导因子-1α介导和调控肝癌相关血管生成因子的表达[J]. 中华肝脏病杂志, 2020, 28(11): 942-948.
Sun JY, Chen XY, Wang L, et al. Hypoxia-inducible factor-1α mediates and regulates angiogenesis-related factors expression in hepatocellular carcinoma[J]. Chin J Hepatol, 2020, 28(11): 942-948.
Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism[J]. Nat Rev Can, 2011, 11(5): 325-337.
徐喆, 袁克非. 脂质代谢重编程与肝癌代谢应激[J]. 四川大学学报(医学版), 2021, 52(4): 561-565.
Xu Z, Yuan KF. Lipid Metabolic Reprogramming and Metabolic Stress in Liver Cancer [J]. J Sichuan Univ(Med Sci), 2021, 52(4): 561-565.
Wang Y, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications[J]. Nat Biotechnol, 2021, 39(11): 1348-1365.
Jain M, Abu-Shumays R, Olsen HE, et al. Advances in nanopore direct RNA sequencing[J]. Nat Methods, 2022, 19(10): 1160-1164.
Wright DJ, NaLHall, Irish N, et al. Long read sequencing reveals novel isoforms and insights into splicing regulation during cell state changes[J]. BMC Genomics, 2022, 23(1): 42.
Liu Y, Zhao T, Li Z, et al. The role of ASCT2 in cancer: a review[J]. Eur J Pharmacol, 2018, 837: 81-87.
0
浏览量
21
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构