1.华南理工大学生物科学与工程学院,广东 广州 510006
2.华南理工大学医学院,广东 广州 510006
3.广东省临床药理学重点实验室//广东省人民医院//广东省医学科学院,广东 广州 510080
4.南方医科大学第二临床医学院,广东 广州 510280
杨莹,在读硕士研究生,研究方向:心肌纤维化分子调控机制,E-mail,904528037@qq.com
纸质出版日期:2021-01-20,
收稿日期:2020-10-06,
扫 描 看 全 文
杨莹,郭晶,温艺红等.PTBP1介导长链非编码RNA RP11-879F14.2发挥抑制心肌纤维化的作用[J].中山大学学报(医学科学版),2021,42(01):33-41.
YANG Ying,GUO Jing,WEN Yi-hong,et al.PTBP1 Mediates the Effect of lncRNA RP11-879F14.2 on Suppression of Fibrosis-related Genes in Cardiac Fibroblasts[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(01):33-41.
杨莹,郭晶,温艺红等.PTBP1介导长链非编码RNA RP11-879F14.2发挥抑制心肌纤维化的作用[J].中山大学学报(医学科学版),2021,42(01):33-41. DOI:
YANG Ying,GUO Jing,WEN Yi-hong,et al.PTBP1 Mediates the Effect of lncRNA RP11-879F14.2 on Suppression of Fibrosis-related Genes in Cardiac Fibroblasts[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(01):33-41. DOI:
目的
2
研究长链非编码RNA(lncRNA)RP11-879F14.2调控心肌成纤维细胞纤维化表型的作用及机制。
方法
2
对心衰患者及健康对照者心肌组织进行Masson染色检测心肌胶原水平。lncRNA表达谱芯片检测心衰患者及健康对照者心肌中lncRNAs的表达变化,实时定量荧光PCR(RT-qPCR)验证RP11-879F14.2在心衰患者心肌中的表达。利用重组RP11-879F14.2腺病毒(rAd-RP11-879F14.2)感染人心房肌成纤维细胞(HAFs),检测纤维化相关基因
Col1a1
,
Col3a1
和
Acta2
表达。RT-qPCR检测HAFs的核/质组分中RP11-879F14.2的水平。基于生物信息学预测和双荧光素酶报告基因实验鉴定RP11-879F14.2与多聚嘧啶区结合蛋白(PTBP1)的结合作用。检测敲低HAFs中PTBP1表达对RP11-879F14.2调控心肌纤维化相关基因表达的影响。
结果
2
Masson染色结果显示,心衰病人心肌组织发生明显纤维化。RT-qPCR结果证实RP11-879F14.2在心衰患者心肌组织中表达增加(
P
<
0.01)。过表达RP11-879F14.2可在RNA及蛋白水平显著抑制心肌纤维化相关基因表达。核质分离及RT-qPCR检测结果证实RP11-879F14.2 主要分布于细胞核中。RP11-879F14.2可与PTBP1结合,并促进HAFs中PTBP1表达,而敲低PTBP1可逆转RP11-879F14.2抑制HAFs中纤维化相关基因表达的作用。
结论
2
PTBP1可介导RP11-879F14.2发挥抑制心肌纤维化的作用。
Objective
2
To investigate the effect of lncRNA RP11-879F14.2 on fibrotic phenotype of cardiac fibroblasts (CFs) and the mechanism involved.
Methods
2
Masson′s trichrome staining was performed to detect the level of myocardial fibrosis in the myocardium of patients with heart failure (HF) and the healthy controls. LncRNAs micro-array was used to detect the expression of lncRNAs in human myocardium samples. Real-time quantitative PCR (RT-qPCR) was performed to verify RP11-879F14.2 expression in the myocardium of HF patients and the healthy controls. The recombinant RP11-879F14.2 adenovirus (rAd-RP11-879F14.2) was used to infect human atrial myofibroblasts (HAFs). Expression of
Col1a1
,
Col3a1
and
Acta2
was detected by RT-qPCR and Western blot assay, respectively. Distribution of RP11-879F14.2 in the nucleus and cytoplasma of HAFs was determined by RT-qPCR assay. According to the results of bio-informatic prediction, dual-luciferase reporter assay was performed to confirm the interaction between RP11-879F14.2 and polypyrimidine tract binding protein 1 (PTBP1). Effect of PTBP1 knock-down on fibrosis-related genes expression modulated by RP11-879F14.2 in HAFs was determined.
Results
2
Masson′s trichrome staining showed that the myocardial fibrosis was significantly increased in the myocardium of HF patients. Consistent with lncRNA microarray results, RP11-879F14.2 was found obviously up-regulated in the myocardium of HF patients. Over-expression of RP11-879F14.2 inhibited mRNA and protein expression of myocardial fibrosis-related genes in HAFs. Results of nucleocytoplasmic separation and RT-qPCR assay showed that RP11-879F14.2 mainly distributed in the nucleus of HAFs. Dual-luciferase reporter assay revealed the interaction between RP11-879F14.2 and PTBP1. Over-expression of PTBP1 enhanced PTBP1 expression in HAFs, but knock-down of PTBP1 could reverse the anti-fibrotic effect of RP11-879F14.2 in HAFs.
Conclusion
2
PTBP1 mediates the anti-fibrotic effect of RP11-879F14.2 in HAFs.
长链非编码RNAlncRNA RP11-879F14.2PTBP1心肌纤维化心肌成纤维细胞
long non-coding RNAlncRNA RP11-879F14.2PTBP1myocardial fibrosiscardiac fibroblasts
Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis [J]. Cell Mol Life Sci, 2014, 71(4):549-574.
Piek A, de Boer RA, Silljé HH. The fibrosis-cell death axis in heart failure [J]. Heart Fail Rev, 2016, 21(2):199-211.
Li AH, Liu PP, Garcia RA, et al. Dynamic changes in myocardial matrix and relevance to disease: translational perspectives[J]. Circ Res, 2014, 114(5):916-927.
Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription[J]. Science, 2007, 316(5830):1484-1488.
El Azzouzi H, Doevendans PA, Sluijter JP. Long non-coding RNAs in heart failure: an obvious lnc[J]. Ann Transl Med, 2016, 4(9):182.
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function[J]. Nat Rev Genet, 2016, 17(1):47-62.
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs[J]. Mol Cell, 2011, 43(6):904-914.
Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA[J]. Genom Proteom Bioinf, 2017, 15(3):177-186.
Creemers EE, van Rooij E. Function and therapeutic potential of noncoding RNAs in cardiac fibrosis[J]. Circ Res, 2016, 118(1):108-118.
Tao H, Yang JJ, Hu W, et al. Noncoding RNA as regulators of cardiac fibrosis: current insight and the road ahead[J]. Pflugers Arch, 2016, 468(6):1103-1111.
Yang Z, Xiao Z, Guo H, et al. Novel role of the clustered miR-23b-3p and miR-27b-3p in enhanced expression of fibrosis-associated genes by targeting TGFBR3 in atrial fibroblasts [J]. J Cell Mol Med, 2019, 23(5):3246-3256.
袁淑菁,梁景南,张 铭,等. CircRNA_005647 通过结合miR-27b-3p 抑制小鼠心肌成纤维细胞中纤维化相关基因表达[J]. 南方医科大学学报, 2019, 39(11): 1312-1319.
Yuan SJ, Liang JN, Zhang M, et al. CircRNA_005647 inhibits the expression of fibrosis-related genes in cardiac fibroblasts via sponging miR-27b-3p[J]. J South Med Univ, 2019, 39(11): 1312-1319.
Segura AM, Frazier OH, Buja LM. Fibrosis and heart failure[J]. Heart Fail Rev, 2014, 19(2):173-185.
Piccoli MT, Gupta SK, Viereck J, et al. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction[J]. Circ Res, 2017, 121(5):575-583.
Liang H, Pan Z, Zhao X, et al. LncRNA PFL contributes to cardiac fibrosis by acting as a competing endogenous RNA of let-7d[J]. Theranostics, 2018, 8(4):1180-1194.
Leisegang MS. LET′s sponge: How the lncRNA PFL promotes cardiac fibrosis[J]. Theranostics, 2018, 8(4):874-877.
Johnsson P, Lipovich L, Grandér D, et al. Evolutionary conservation of long non-coding RNAs; sequence, structure, function[J]. Biochim Biophys Acta Gen Subj, 2014, 1840(3):1063-1071.
Sawicka K, Bushell M, Spriggs KA, et al. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein[J]. Biochem Soc Trans, 2008, 36(Pt4):641-647.
Liu C, Yang Z, Wu J, et al. Long noncoding RNA H19 interacts with polypyrimidine tract‐binding protein 1 to reprogram hepatic lipid homeostasis[J]. Hepatology, 2018, 67(5):1768-1783.
Ramos AD, Lim DA, Zarabi H, et al. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells[J]. Cell Stem Cell, 2015, 16(4): 439-447.
Fochi S, Lorenzi P, Galasso M, et al. The emerging role of the RBM20 and PTBP1 ribonucleoproteins in heart development and cardiovascular diseases[J]. Genes, 2020, 11(4):402.
Zhang L, Yang Z, Trottier J, et al. Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay[J]. Hepatology, 2017, 65(2):604-615.
Liu Z, Wang L, Welch JD, et al. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte[J]. Nature, 2017, 551(7678):100-104.
0
浏览量
0
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构