中山大学附属第三医院神经科,广东 广州 510630
[ "中山大学附属第三医院神经科主任,精神与神经疾病研究中心常务副主任,主任医师,教授,博士生导师及博士后导师。省委保健专家、美国匹茨堡大学高级访问学者。广东省医学会神经病学分会候任主任委员;中国老年学和老年医学学会脑认知与健康分会副主任委员;国家卫生计生委脑卒中防治工程专家委员会脑小血管病专业委员会副主任委员;广东省医疗行业学会神经内科分会主任委员;中华医学会神经病学分会全国委员;中国医师协会神经病学分会全国委员;中华医学会神经病学分会脑血管组委员;中国卒中学会循环与代谢分会常委;中国卒中学会脑血管病高危人群管理分会常委,《中华神经科杂志》《中华神经医学杂志》《中山大学学报(医学科学版)》编委。主持科研项目10项,其中国家自然科学基金3项,省部级重大科技项目3项;近五年以通信作者在包括Theranostics、Transl Stroke Res、FASEB J及Neurology等杂志上发表SCI收录论文60余篇;作为第二完成人,获教育部科技进步成果二等奖1项、广东省科技进步成果二等奖1项;以副主编身份出版《多发性硬化》和《神经免疫性疾病新进展》;以主编身份出版《老年痴呆看名医》及《高血压脑卒中家庭健康管理手册》。目前研究方向主要为急性缺血性卒中及脑小血管病的发病及保护机制的研究。E-mail: lzq1828@163.com。" ]
纸质出版日期:2021-01-20,
收稿日期:2021-01-04,
扫 描 看 全 文
陆正齐.炎症、免疫与脑血管病的研究进展[J].中山大学学报(医学科学版),2021,42(01):11-16.
LU Zheng-qi.Research Progress of Inflammation, Immunity and Cerebrovascular Disease[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(01):11-16.
炎症和免疫是脑血管病病理生理的重要部分,其动态变化影响着脑血管病的进程和预后。缺血性卒中急性期的炎症激活造成大脑病灶的炎症损伤,还参与衰老相关的脑小血管病的脑损害,引起血管性痴呆等认知功能障碍。本文就炎症和免疫与脑血管病相互作用机制的研究进展进行综述,以更好地了解和探索免疫调节在治疗中的潜力。
Inflammation and immunity are important parts of the pathophysiology of cerebrovascular diseases, as their dynamic changes affect the development and prognosis of cerebrovascular diseases. Inflammatory response causes brain lesions in the acute phase of ischemic stroke, and is also involved in brain damage in aging-related cerebral small vessel disease, resulting in cognitive dysfunction such as vascular dementia. This article reviews the research progress of the interaction mechanism between inflammation, immunity and cerebrovascular disease, in order to better understand and explore the potential of immune regulation in treatment.
炎症免疫缺血性卒中脑小血管病
inflammationimmunityischemic strokecerebral small vessel disease
Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: A report from the american heart association[J]. Circulation, 2020, 141(9):e139-e596.
Ogata J, Yamanishi H, Ishibashi-Ueda H. Review: Role of cerebral vessels in ischaemic injury of the brain[J]. Neuropathol Appl Neurobiol, 2011, 37(1):40-55.
Kim KA, Shin D, Kim JH, et al. Role of autophagy in endothelial damage and Blood-Brain barrier disruption in ischemic stroke[J]. Stroke, 2018, 49(6):1571-1579.
Wilhelm I, Nyul-Toth A, Kozma M, et al. Role of pattern recognition receptors of the neurovascular unit in inflamm-aging[J]. Am J Physiol Heart Circ Physiol, 2017, 313(5):H1000-H1012.
De Meyer SF, Denorme F, Langhauser F, et al. Thromboinflammation in stroke brain damage[J]. Stroke, 2016, 47(4):1165-1172.
Wu F, Zou Q, Ding X, et al. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain[J]. J Neuroinflammation, 2016, 13:23.
Sifat AE, Vaidya B, Abbruscato TJ. Blood-Brain barrier protection as a therapeutic strategy for acute ischemic stroke[J]. AAPS J, 2017, 19(4):957-972.
Aslam M, Schluter KD, Rohrbach S, et al. Hypoxia-reoxygenation-induced endothelial barrier failure: Role of RhoA, Rac1 and myosin light chain kinase[J]. J Physiol,2013,591(2):461-473.
Wang J, Xing H, Wan L, et al. Treatment targets for M2 microglia polarization in ischemic stroke[J]. Biomed Pharmacother, 2018, 105:518-525.
Da FA, Matias D, Garcia C, et al. The impact of microglial activation on blood-brain barrier in brain diseases[J]. Front Cell Neurosci, 2014, 8:362.
Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation[J]. Cell Metab, 2011, 14(6):724-738.
Michinaga S, Koyama Y. Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage[J]. Int J Mol Sci, 2019, 20(3):571.
Gonul E, Duz B, Kahraman S, et al. Early pericyte response to brain hypoxia in cats: An ultrastructural study[J]. Microvasc Res, 2002, 64(1):116-119.
Jansson D, Rustenhoven J, Feng S, et al. A role for human brain pericytes in neuroinflammation[J]. J Neuroinflammation, 2014, 11:104.
Cai W, Liu H, Zhao J, et al. Pericytes in brain injury and repair after ischemic stroke[J]. Transl Stroke Res, 2017, 8(2):107-121.
Zhang X, Hou XH, Ma YH, et al. Association of peripheral neutrophil count with intracranial atherosclerotic stenosis[J]. BMC Neurol, 2020, 20(1):65.
Cai W, Liu S, Hu M, et al. Functional dynamics of neutrophils after ischemic stroke[J]. Transl Stroke Res, 2020, 11(1):108-121.
Perez-De-Puig I, Miro-Mur F, Ferrer-Ferrer M, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke[J]. Acta Neuropathol, 2015, 129(2):239-257.
Walz W, Cayabyab FS. Neutrophil infiltration and matrix metalloproteinase-9 in lacunar infarction[J]. Neurochem Res, 2017, 42(9):2560-2565.
Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction[J]. Free Radic Res, 2009, 43(4):348-364.
Kuric E, Ruscher K. Dynamics of major histocompatibility complex class II-positive cells in the postischemic brain--influence of levodopa treatment[J]. J Neuroinflammation, 2014, 11:145.
Gu L, Xiong X, Zhang H, et al. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice[J]. Stroke, 2012, 43(7):1941-1946.
Pangrazzi L, Meryk A, Naismith E, et al. "Inflamm-aging" influences immune cell survival factors in human bone marrow[J]. Eur J Immunol, 2017, 47(3):481-492.
Low A, Mak E, Rowe JB, et al. Inflammation and cerebral small vessel disease: A systematic review[J]. Ageing Res Rev, 2019, 53:100916.
Denkinger MD, Leins H, Schirmbeck R, et al. HSC aging and senescent immune remodeling[J]. Trends Immunol, 2015, 36(12):815-824.
Jacinto TA, Meireles GS, Dias AT, et al. Increased ROS production and DNA damage in monocytes are biomarkers of aging and atherosclerosis[J]. Biol Res, 2018, 51(1):33.
Sapey E, Greenwood H, Walton G, et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: Toward targeted treatments for immunosenescence[J]. Blood, 2014, 123(2):239-248.
Harry GJ. Microglia during development and aging[J]. Pharmacol Ther, 2013, 139(3):313-326.
Pinti M, Appay V, Campisi J, et al. Aging of the immune system: Focus on inflammation and vaccination[J]. Eur J Immunol, 2016, 46(10):2286-2301.
Thomas R, Wang W, Su DM. Contributions of Age-related thymic involution to immunosenescence and inflammaging[J]. Immun Ageing, 2020, 17:2.
Thevaranjan N, Puchta A, Schulz C, et al. Age-Associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction[J]. Cell Host Microbe, 2018, 23(4):570.
Rensma SP, van Sloten TT, Launer LJ, et al. Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: A systematic review and meta-analysis[J]. Neurosci Biobehav Rev, 2018, 90:164-173.
Fu Y, Yan Y. Emerging role of immunity in cerebral small vessel disease[J]. Front Immunol, 2018, 9:67.
Schreiber S, Wilisch-Neumann A, Schreiber F, et al. Invited Review: The spectrum of age-related small vessel diseases: Potential overlap and interactions of amyloid and nonamyloid vasculopathies[J]. Neuropathol Appl Neurobiol, 2020, 46(3):219-239.
Regenhardt RW, Das AS, Lo EH, et al. Advances in understanding the pathophysiology of lacunar stroke: A review[J]. JAMA Neurol, 2018, 75(10):1273-1281.
Liberale L, Dallegri F, Montecucco F, et al. Pathophysiological relevance of macrophage subsets in atherogenesis[J]. Thromb Haemost, 2017, 117(1):7-18.
Yang CN, Shiao YJ, Shie FS, et al. Mechanism mediating oligomeric Abeta clearance by naive primary microglia[J]. Neurobiol Dis, 2011, 42(3):221-230.
Paneni F, Diaz CC, Libby P, et al. The aging cardiovascular system: Understanding it at the cellular and clinical levels[J]. J Am Coll Cardiol, 2017, 69(15):1952-1967.
Ferretti MT, Merlini M, Spani C, et al. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer's disease-like cerebral amyloidosis[J]. Brain Behav Immun, 2016, 54:211-225.
Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer's disease (AD)[J]. Front Aging Neurosci, 2015, 7:9.
0
浏览量
0
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构