1.兰州大学第二医院核医学科,甘肃 兰州 730030
2.兰州大学第二临床医学院,甘肃 兰州 730030
王立琴,第一作者,研究方向:核素诊断及治疗,E-mail:2282708201@qq.com
纸质出版日期:2024-07-20,
收稿日期:2024-04-02,
录用日期:2024-05-29
扫 描 看 全 文
王立琴,柳江燕.225Ac在肿瘤靶向治疗中的应用及进展[J].中山大学学报(医学科学版),2024,45(04):503-510.
WANG Liqin,LIU Jiangyan.Application and Research Progress of 225Ac in Tumor Targeted Treatment[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(04):503-510.
王立琴,柳江燕.225Ac在肿瘤靶向治疗中的应用及进展[J].中山大学学报(医学科学版),2024,45(04):503-510. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240617.007.
WANG Liqin,LIU Jiangyan.Application and Research Progress of 225Ac in Tumor Targeted Treatment[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(04):503-510. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240617.007.
锕-225(
225
Ac)具有高传能线密度、适宜的半衰期、短粒子射程和良好的配位能力等特性,是很有医用前景的α核素之一,在肿瘤的靶向放射性核素治疗中具有重要的研究价值。本文简要介绍了
225
Ac的物理和化学特性以及常用螯合剂(前列腺特异性膜抗原、奥曲肽、纳米载体等),围绕着以多肽或小分子为靶向分子、以单克隆抗体或蛋白为靶向分子和基于纳米载体的TAT药物,综述了
225
Ac标记的靶向药物在肿瘤中的应用和纳米材料对
225
Ac衰变子体的保留作用,分析其应用于治疗的价值,总结了
225
Ac标记方法和适宜螯合剂的选择、靶向性的提高、毒副作用,展望了
225
Ac国产化以满足未来的临床需求,以期为后续的
225
Ac标记药物研发提供参考。
225
Ac has high linear energy transfer, suitable half-life, short particle range, and good coordination ability, making it one of the promising alpha emitters in targeted radioisotope therapy for tumors, and it has significant research value. This article briefly introduces the physical and chemical properties of
225
Ac, as well as common chelating agents (prostate-specific membrane antigen, octreotide, nano-carriers, etc.). It reviews the applications of targeted drugs labeled with
225
Ac in tumors, based on peptides or small molecules as targeting agents, monoclonal antibodies or proteins as targeting molecules, and nano-carriers. It also analyzes the value of its app
lication in therapy, summarizes the methods of labeling with
225
Ac and the selection of suitable chelating agents, improvements in targeting specificity, and toxicity side effects. Furthermore, it looks forward to the localization of
225
Ac production to meet future clinical needs, in order to provide reference for the subsequent development of
225
Ac-labeled drugs.
锕-225α核素肿瘤靶向α治疗多肽抗体纳米载体
Actinium-225α-emitting radionuclidetumortargeted α-therapypolypeptideantibodynanocarrier
Advancing cancer therapy[J]. Nat Cancer, 2021, 2(3): 245-246.
Sun B, Hagan CT4th, Caster J, et al. Nanotechnology in radiation oncology[J]. Hematol Oncol Clin North Am, 2019, 33(6): 1071-1093.
Haume K, Rosa S, Grellet S, et al. Gold nanoparticles for cancer radiotherapy: a review[J]. Cancer Nanotechnol, 2016, 7(1):1-20.
Paunesku T, Gutiontov S, Brown k, et al. Radiosensitization and nanoparticles[J]. Cancer Treat Res, 2015: 151-171.
Phillips WT, Bao A, Brenner AJ, et al. Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles[J]. Adv Drug Deliv Rev, 2014, 76: 39-59.
Salvanou E A, Kolokithas-Ntoukas A, Liolios C, et al. Preliminary evaluation of iron oxide nanoparticles radiolabeled with 68Ga and 177Lu as potential theranostic agents[J]. Nanomaterials, 2022, 12(14): 2490.
Bergs JW, Wacker MG, Hehlgans S, et al. The role of recent nanotechnology in enhancing the efficacy of radiation therapy[J]. Biochim Biophys Acta, 2015, 1856(1): 130-143.
Barker HE, Paget JTE, Khan AA, et al. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence[J]. Nat Rev Cancer, 2015, 15(7): 409-425.
宋鑫, 许波华, 陶巧玉, 等. 225Ac在肿瘤靶向治疗中的应用研究进展[J]. 中国新药杂志, 2023, 32(16): 1644-1651.
Song X, Xu BH, Tao QY, et al. Research progress on the application of 225 Ac in tumor targeted therapy[J]. Chin J New Drugs, 2023, 32(16): 1644-1651.
Nelson BJB, Andersson JD, Wuest F. Targeted alpha therapy: progress in radionuclide production, radiochemistry, and applications[J]. Pharmaceutics, 2021, 13(1): 49.
Mcdevitt MR, Sgouros G, Sofou S. Targeted and nontargeted α-particle therapies[J]. Ann Rev Biomed Engin, 2018, 20(1): 73-93.
赵紫宇, 温凯, 马承伟, 等. α核素225Ac的制备及医学应用现状[J]. 同位素, 2022, 35(3): 179-188.
Zhao ZY, Wen K, Ma CW, et al. Preparation and medical application status of α nuclide 225Ac[J]. Isotopes, 2022, 35(3): 179-188.
李明起, 潘俊男, 段玉春, 等. α放射核素靶向治疗研究进展[J]. 同位素, 2014, 27(4): 243-250.
Li MQ, Pan JN, Duan YC, et al. Research progress on targeted therapy of alpha radionuclides[J]. Isotopes, 2014, 27(4): 243-250.
Li X, Lan X, Cai W. Pretargeted radioimmunotherapy of ovarian cancer with 225Ac and an internalizing antibody[J]. J Nucl Med, 2023, 64(9): 1446-1448.
柳佳娣, 徐度玲, 李鸿岩,等. 用于恶性肿瘤治疗的225Ac放射性药物的研究现状与展望[J].核化学与放射化学, 2024, 46(1): 46-53.
Liu JD, Xu DL, Li HY, et al. Research status and prospect of 225Ac radioactive drugs for the treatment of malignant tumors[J]. J Nucl Radiochem Chemist, 2024, 46(1): 46-53 .
Thiele NA, Wilson JJ. Actinium-225 for targeted α therapy: coordination chemistry and current chelation approaches[J]. Cancer Biother Radiopharm, 2018, 33(8): 336-348.
Benešová M, Schäfer M, Bauder-Wüst U, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer[J]. J Nucl Med, 2015, 56(6): 914-920.
Benešová M, Bauder-Wüst U, Schäfer M, et al. Linker modification strategies to control the prostate-specific membrane antigen (PSMA)-targeting and pharmacokinetic properties of dota-conjugated psma inhibitors[J]. J Med Chemist, 2016, 59(5): 1761-1775.
崔海平, 沈浪涛. α放射性金属药物的研究现状与展望[J]. 核化学与放射化学, 2020, 42(6): 524-538.
Cui HP, Shen LT. The research status and prospects of α-radiopharmaceuticals[J]. J Nucl Chemist Radiol Chemist, 2020, 42(6): 524-538.
Debnath S, Zhou N, Mclaughlin M, et al. PSMA-targeting imaging and theranostic agents-current status and future perspective[J]. Internat J Mol Sci, 2022, 23(3): 1158.
Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding[J]. J Nucl Med, 2017, 58(10): 1624-1631.
Sgouros G. Dosimetry, radiobiology and synthetic lethality: radiopharmaceutical therapy (RPT) with alpha-particle-emitters[J]. Semi Nucl Med, 2020, 50(2): 124-132.
Tafreshi NK, Doligalski ML, Tichacek CJ, et al. Development of targeted alpha particle therapy for solid tumors[J]. Molecules, 2019, 24(23): 4314.
Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control[J]. J Nucl Med, 2018, 59(5): 795-802.
Rathke H, Bruchertseifer F, Kratochwil C, et al. First patient exceeding 5-year complete remission after 225Ac-PSMA-TAT[J]. Eur J Nucl Med Mol Imag, 2021, 48(1): 311-312.
Kratochwil C, Haberkorn U, Giesel FL. 225Ac-PSMA-617 for therapy of prostate cancer[J]. Semi Nucl Med, 2020, 50(2): 133-140.
Van der Doelen MJ, Mehra N, Van Oort IM, et al. Clinical outcomes and molecular profiling of advanced metastatic castration-resistant prostate cancer patients treated with 225Ac-PSMA-617 targeted alpha-radiation therapy[J]. Urol Oncol, 2021, 39(10): 729.e7-729.e16.
Yadav MP, Ballal S, Sahoo RK, et al. Efficacy and safety of 225Ac-PSMA-617 targeted alpha therapy in metastatic castration-resistant prostate cancer patients[J]. Theranostics, 2020, 10(20): 9364-9377.
Alan-Selcuk N, Beydagi G, Demirci E, et al. Clinical experience with[225Ac]Ac-PSMA treatment in patients with[177Lu]Lu-psma–refractory metastatic castration-resistant prostate cancer[J]. J Nucl Med, 2023, 64(10): 1574-1580.
Rathke H, Kratochwil C, Hohenberger R, et al. Initial clinical experience performing sialendoscopy for salivary gland protection in patients undergoing 225Ac-PSMA-617 RLT[J]. Eur J Nucl Med Mol Imag, 2019, 46(1): 139-147.
Lo Russo G, Pusceddu S, Prinzi N, et al. Peptide receptor radionuclide therapy: focus on bronchial neuroendocrine tumors[J]. Tumor Biol, 2016, 37(10): 12991-13003.
黄德龙, 吴俊豪, 何雨航, 等. 基于DOTATATE 的 α/β 放射性核素治疗神经内分泌肿瘤的研究进展[J]. 中华核医学与分子影像杂志, 2023, 43(10): 627-630.
Huang DL, Wu JH, He YH, et al. Research progress on neuroendocrine tumors treated with α/β radioactive isotopes based on DOTATATE[J]. Chin J Nucl Med Mol Imag, 2023, 43(10): 627-630.
Tafreshi NK, Pandya DN, Tichacek CJ, et al. Preclinical evaluation of [225Ac]Ac-DOTATATE for treatment of lung neuroendocrine neoplasms[J]. Eur J Nucl Med Mol Imag, 2021, 48(11): 3408-3421.
Demirci E, Alan Selçuk N, Beydağı G, et al. Initial gindings on the use of [225Ac]Ac-DOTATATE therapy as a theranostic application in patients with neuroendocrine tumors[J]. Mol Imaging Radionucl Ther, 2023, 32(3): 226-232.
Yadav MP, Ballal S, Sahoo RK, et al. Efficacy and safety of 225Ac-DOTATATE targeted alpha therapy in metastatic paragangliomas: a pilot study[J]. Eur J Nucl Med Mol Imag, 2022, 49(5): 1595-1606.
Ballal S, Yadav MP, Bal C, et al. Broadening horizons with 225Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to 177Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety[J]. Eur J Nucl Med Mol Imag, 2020, 47(4): 934-946.
杨博成,蒋理,谢延风.复发胶质母细胞瘤治疗进展[J].重庆医科大学学报,2022,47(7):857-861.
Yang BC, Jiang L, Xie YF. Progress in the treatment of recurrent glioblastoma[J]. J Chongqing Med Univ, 2022, 47(7): 857-861.
马佼, 欧蕾, 饶梓娟, 等. 225Ac用于核素靶向治疗的临床应用及研究进展[J]. 中华核医学与分子影像杂志, 2023, 43(1): 52-54.
Ma J, Ou L, Rao ZJ, et al. Clinical applications and research progress of 225Ac for targeted radionuclide therapy[J]. Chin J Nucl Med Mol Imag, 2023, 43(1): 52-54.
Królicki L, Bruchertseifer F, Kunikowska J, et al. Dose escalation study of targeted alpha therapy with [225Ac]Ac-DOTA-substance P in recurrence glioblastoma - safety and efficacy[J]. Eur J Nucl Med Mol Imag, 2021, 48(11): 3595-3605.
Cortez A, Josefsson A, Mccarty G, et al. Evaluation of [225Ac]Ac-DOTA-anti-VLA-4 for targeted alpha therapy of metastatic melanoma[J]. Nucl Med Biol, 2020, 88: 62-72.
Jurcic JG, Levy M, Park J, et al. Trial in progress: a phase I/Ⅱ Study of Lintuzumab-Ac225 in older patients with untreated acute myeloid leukemia[J]. Clin Lymphoma Myeloma Leuk, 2017, 17:S277.
Garg R, Allen KJH, Dawicki W, et al. 225Ac-labeled CD33-targeting antibody reverses resistance to Bcl-2 inhibitor venetoclax in acute myeloid leukemia models[J]. Cancer Med, 2021, 10(3): 1128-1140.
Song G, Cheng L, Chao Y, et al. Emerging nanotechnology and advanced materials for cancer radiation therapy[J]. Adv Mater, 2017, 29(32): 1700996.
Izci M, Maksoudian C, Manshian BB, et al. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors[J]. Chem Rev, 2021, 121(3): 1746-1803.
Zhang X, Tang J, Li C, et al. A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy[J]. Bioac Mater, 2021, 6(2): 472-489.
Kalyane D, Raval N, Maheshwari R, et al. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 1252-1276.
Pellico J, Gawne PJ , de Rosales RTM. Radiolabelling of nanomaterials for medical imaging and therapy[J]. Chem Soc Rev, 2021, 50(5): 3355-3423.
Liang R, Liao Z, Li F, et al. In vitro anticancer ability of nano fluorescent 111In‐MIL‐68/PEG‐FA on hela cells[J]. Chemistry, 2022, 28(19): e202104589.
De Kruijff RM, Drost K, Thijssen L, et al. Improved 225Ac daughter retention in InPO4 containing polymersomes[J]. Appl Radiat Isot, 2017, 128: 183-189.
Mclaughlin MF, Robertson D, Pevsner PH, et al. LnPO4 nanoparticles doped with Ac-225 and sequestered daughters for targeted alpha therapy[J]. Cancer Biother Radiopharm, 2014, 29(1): 34-41.
Kumar R, Mondal K, Panda PK, et al. Core–shell nanostructures: perspectives towards drug delivery applications[J]. J Materi Chemist B, 2020, 8(39): 8992-9027.
Toro-González M, Copping R, Mirzadeh S, et al. Multifunctional GdVO4: Eu core–shell nanoparticles containing 225Ac for targeted alpha therapy and molecular imaging[J]. J Mater Chemist B, 2018, 6(47): 7985-7997.
Metwally SS, Rizk HE. Preparation and characterization of nano-sized iron–titanium mixed oxide for removal of some lanthanides from aqueous solution[J]. Separat Sci Technol, 2014, 49(15): 2426-2436.
Filipowicz B, Pruszyński M, Krajewski S, et al. Adsorption of 137Cs on titanate nanostructures[J]. J Radioanalyt Nucl Chemist, 2014, 301(3): 889-895.
Cędrowska E, Pruszynski M, Majkowska-Pilip A, et al. Functionalized TiO2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy[J]. J Nanopart Res, 2018, 20(3): 83.
Song G, Hao J, Liang C, et al. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform[J]. Angew Chem Int Ed Engl, 2015, 55(6): 2122-2126.
Vukadinović A, Milanović Z, Ognjanović M, et al. 90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours[J]. Nanotechnology, 2022, 33(40): 405102.
Xu Y, Rothe R, Voigt D, et al. A self-assembled dynamic extracellular matrix-like hydrogel system with multi-scale structures for cell bioengineering applications[J]. Acta Biomater, 2023, 162: 211-225.
蔡紫煊, 张斌, 姜丽阳, 等. 智能响应型水凝胶药物控释体系及其应用[J]. 化学进展, 2019, 31(12): 1653.
Cai ZX, Zhang B, Jiang LY, et al. Intelligent response-type hydrogel drug delivery system and its application[J]. Prog Chemist, 2019, 31(12): 1653.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构