1.华南理工大学生物科学与工程学院,广东 广州 510006
2.南方医科大学第二临床医学院,广东 广州 510280
3.广东省心血管病研究所心内科,广东 广州 510080
4.广东省人民医院广东省临床药理学重点实验室,广东 广州 510080
5.广东省人民医院检验科,广东 广州 510080
6.广东省人民医院麻醉科,广东 广州 510080
丰嘉欣,硕士生,研究方向:心肌纤维化的分子机制,E-mail:13640849602@163.com
纸质出版日期:2022-11-20,
收稿日期:2022-06-30,
扫 描 看 全 文
丰嘉欣,郭继深,梁俣等.Circ_0018478通过编码HERC4-193发挥抑制心肌成纤维细胞纤维化表型的作用[J].中山大学学报(医学科学版),2022,43(06):995-1004.
FENG Jia-xin,GUO Ji-shen,LIANG Yu,et al.Circ_0018478 Inhibits the Fibrotic Phenotype of Cardiac Fibroblasts via Encoding Protein HERC4-193[J].Journal of Sun Yat-sen University(Medical Sciences),2022,43(06):995-1004.
丰嘉欣,郭继深,梁俣等.Circ_0018478通过编码HERC4-193发挥抑制心肌成纤维细胞纤维化表型的作用[J].中山大学学报(医学科学版),2022,43(06):995-1004. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0615.
FENG Jia-xin,GUO Ji-shen,LIANG Yu,et al.Circ_0018478 Inhibits the Fibrotic Phenotype of Cardiac Fibroblasts via Encoding Protein HERC4-193[J].Journal of Sun Yat-sen University(Medical Sciences),2022,43(06):995-1004. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0615.
目的
2
探究环状RNA circ_0018478调控心肌成纤维细胞纤维化表型的作用和可能机制。
方法
2
RT-qPCR检测健康器官捐献者(
n
=18)和心衰(
n
=28)患者心肌中circ_0018478及其宿主基因含E3泛素蛋白连接酶4的HECT和RLD结构域(
HERC4
)的表达水平。荧光原位杂交(FISH)实验和核质RNA定量检测circ_0018478的细胞分布情况,放线菌素D干预实验和核糖核酸外切酶(RNase R)消化实验检测circ_0018478的RNA稳定性。过表达腺病毒介导的circ_0018478时,分别在RNA和蛋白水平检测乳小鼠心肌成纤维细胞(mCFs)中如Ⅰ型和Ⅲ型胶原等纤维化相关基因表达的影响。利用EdU染色和Trans-well细胞迁移实验鉴定circ_0018478对mCFs增殖和迁移能力的影响。质谱shot-gun分析circ_0018478可能翻译蛋白的肽段序列。利用小干扰RNA(siRNA)抑制HERC4-193表达,检测对circ_0018478调控mCFs纤维化表型的影响。
结果
2
在心衰病人心肌中,相较于无显著表达差异的宿主基因HERC4,环形RNA circ_0018478表达显著增加。FISH和核质分离实验结果证实circ_0018478主要定位于心肌细胞胞质中。放线菌素D和RNase R消化实验证实circ_0018478具有典型的RNA稳定性。过表达circ_0018478可抑制mCFs的增殖、迁移和纤维化相关基因的表达。质谱shot-gun和Western blot检测结果提示circ_0018478可翻译预期的HERC4-193蛋白。过表达circ_0018478和HERC4-193可一致地抑制mCFs的纤维化表型,而抑制HERC4-193表达可有效减弱circ_0018478抑制mCFs中纤维化相关基因表达的作用(
P
<
0.05)。
结论
2
Circ_0018478通过翻译蛋白HERC4-193发挥抑制心肌成纤维细胞纤维化表型的作用。
Objective
2
To investigate the effect of circ_0018478 on the fibrotic phenotype of cardiac fibroblasts and the potential mechanism involved.
Methods
2
The expression of circ_0018478 and its host gene of HECT and RLD domain containing E3 ubiquitin protein ligase 4 (
HERC4
) in the myocardium of patients with heart failure (HF) (
n
=28) and healthy donors (
n
=18) was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR) assay. The distribution of circ_0018478 was identified by fluorescence in situ hybridization (FISH) assay and RT-qPCR assay based on nucleocytoplasmic RNA in human AC16 cardiomyocytes. Actinomycin D and RNase R exonuclease digestion were used to test the stability of circ_0018478 in AC16 cells. RNA and protein expression of fibrosis-related genes was detected in mouse cardiac fibroblasts (mCFs) with adenovirus-mediated over-expression of circ_0018478. EdU staining and transwell migration assay were performed to detect the effects of circ_0018478 on mCFs proliferation and migration activities. The potential circ_0018478-translated protein in mCFs was identified by mass spectrometry (MS) shot-gun assay. HERC4-193 was inhibited by small interfering RNA (siRNA), and the effect of HERC4-193 knock-down on the fibrotic phenotype of mCFs with over-expression of circ_0018478 was studied.
Results
2
The expression of circ_0018478 was up-regulated in the myocardium of HF patients, with no significant difference in its host gene of
HERC4
. The results of FISH and RT-qPCR assay showed that circ_0018478 was mainly in the cytoplasm of AC16 cardiomyocytes. The characteristic RNA stability of circ_0018478 was verified by Actinomycin D and RNase R assay, respectively. The enforced expression of circ_0018478 suppressed proliferation and migration of mCFs, and inhibited the expression of fibrosis-related genes in mCFs. The results of MS shot-gun assay and Western blotting showed that circ_0018478 could translate protein HERC4-193. Overexpression of the circ_0018478 and protein HERC4-193 could consistently inhibit the fibrotic phenotype of mCFs. Knock-down of HERC4-193 could attenuate the inhibitory effect of circ_0018478 on fibrosis-related gene expression in mCFs (
P
<
0.05).
Conclusions
2
Circ_0018478 inhibits the fibrotic phenotype of cardiac fibroblasts via translating HERC4-193 protein.
心肌纤维化circ_0018478翻译心肌成纤维细胞
cardiac fibrosiscirc_0018478translationcardiac fibroblast
Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis[J]. Matrix Biol, 2018, 68-69:490-506.
Gupta S, Ge Y, Singh A, et al. Multimodality imaging assessment of myocardial fibrosis[J]. JACC Cardiovasc Imaging, 2021, 14(12):2457-2469.
Umbarkar P, Ejantkar S, Tousif S, et al. Mechanisms of fibroblast activation and myocardial fibrosis: Lessons learned from FB-Specific conditional mouse models[J]. Cells, 2021, 10(9):2412.
Maruyama K, Imanaka-Yoshida K. The pathogenesis of cardiac fibrosis: a review of recent progress[J]. Int J Mol Sci, 2022, 23(5):2617-2632.
Achkar A, Saliba Y, Fares N. Differential gender-dependent patterns of cardiac fibrosis and fibroblast phenotypes in aging mice[J]. Oxid Med Cell Longev, 2020, 2020:8282157.
Tallquist MD. Cardiac fibroblast diversity [J]. Annu Rev Physiol, 2020, 10(82):63-78.
Liu M, López de Juan Abad B, Cheng K. Cardiac fibrosis: myofibroblast-mediated pathological regulation and drug delivery strategies[J]. Adv Drug Deliv Rev, 2021, 173:504-519.
Bao Q, Zhang B, Suo Y, Liu C, et al. Intermittent hypoxia mediated by TSP1 dependent on STAT3 induces cardiac fibroblast activation and cardiac fibrosis[J]. Elife, 2020, 9:e49923.
Stratton MS, McKinsey TA. Epigenetic regulation of cardiac fibrosis [J]. J Mol Cell Cardiol, 2016, 92:206-213.
Wilusz JE. Circular RNAs: Unexpected outputs of many protein-coding genes [J]. RNA Biol, 2017, 14(8):1007-1017.
Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer[J]. Cancer Res, 2013, 73(18):5609-5612.
Wen SY, Qadir J, Yang BB. Circular RNA translation: novel protein isoforms and clinical significance[J]. Trends Mol Med, 2022, 28(5):405-420.
Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: functions, mechanisms, and identification [J]. Theranostics, 2020, 10(8):3503-3517.
Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs [J]. The EMBO Journal, 2019, 38(16):e100836.
Tang X, Guo M, Ding P, et al. BUB1B and circBUB1B_544aa aggravate multiple myeloma malignancy through evoking chromosomal instability[J]. Signal Transduct Target Ther, 2021, 6(1):361.
Meng L, Zhang Y, Wu P, et al. CircSTX6 promotes pancreatic ductal adenocarcinoma progression by sponging miR-449b-5p and interacting with CUL2 [J]. Mol Cancer, 2022, 21(1):121-134.
An M, Zheng H, Huang J, et al. Aberrant nuclear export of circNCOR1 underlies SMAD7-mediated lymph node metastasis of bladder cancer[J]. Cancer Res, 2022, 82(12):2239-2253.
Yousefi F, Soltani BM. Circular RNAs as potential theranostics in the cardiac fibrosis [J]. Heart Fail Rev, 2021, 26(1):195-203.
温艺红, 杨真祯, 张铭, 等. CircRNA_100395 通过结合miR-144-3p 抑制心肌成纤维细胞中纤维化相关基因的表达[J]. 中山大学学报(医学科学版), 2020, 41(6) :875-883.
Wen YH, Yang ZZ, Zhang M, et al. CircRNA_100395 inhibits expression of myocardial fibrosis-related genes in human atrial myofibroblasts via sponging miR-144-3p[J]. J SUN Yat-sen Univ (Med Sci), 2020, 41(6):875-883.
Zaiou M. Circular RNAs in hypertension: challenges and clinical promise[J]. Hypertens Res, 2019, 42(11):1653-1663.
Li M, Ding W, Liu G.et al. Extracellular circular RNAs act as novel first messengers mediating cell cross-talk in ischemic cardiac injury and myocardial remodeling[J]. J Cardiovasc Transl Res, 2022,15(3):444-455.
黄智琪, 严钰敏, 郭晶, 等. 环状RNA circ_0036176结合miR-218-5p发挥抑制心肌纤维化的作用[J].中山大学学报(医学科学版), 2022, 43(1):61-69.
Huang ZQ, Yan YM, Guo J, et al. Circular RNA circ_0036176 inhibiting myocardial fibrosis via sponging miRNA-218-5p[J]. J Sun Yat-sen Univ (Med Sci), 2022, 43(1):61-69.
Tao H, Shi KH, Yang JJ, et al. Epigenetic regulation of cardiac fibrosis[J]. Cell Signal, 2013, 25(9):1932-1938.
Li X, Liu CX, Xue W, et al. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection[J]. Mol Cell, 2017, 67(2):214-227.
Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus [J]. Nat Struct Mol Biol, 2015, 22(3):256-264.
van Heesch S, Witte F, Schneider-Lunitz V, et al. The translational landscape of the human heart [J]. Cell, 2019, 178(1):242-260.
孙帅锋, 刘巍. circRNA在心肌纤维化中的研究进展[J]. 新医学, 2020, 51(7): 493-496.
Sun SF, Liu W. Research progress on circRNA in myocardial fibrosis [J]. New Med, 2020, 51(7): 493-496.
Du WW, Xu J, Yang W, et al. A neuroligin isoform translated by circNlgn contributes to cardiac remodeling [J]. Circ Res, 2021,129(5):568-582.
Guo J, Chen LW, Huang ZQ, et al. Suppression of the inhibitory effect of circ_0036176-translated Myo9a-208 on cardiac fibroblast proliferation by miR-218-5p [J]. J Cardiovasc Transl Res, 2022,15(3):548-559.
0
浏览量
0
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构